# Definition:Uniform Continuity/Real Function

Jump to navigation
Jump to search

## Definition

Let $I \subseteq \R$ be a real interval.

A real function $f: I \to \R$ is said to be **uniformly continuous** on $I$ if and only if:

- for every $\epsilon > 0$ there exists $\delta > 0$ such that the following property holds:
- for every $x, y \in I$ such that $\size {x - y} < \delta$ it happens that $\size {\map f x - \map f y} < \epsilon$.

Formally: $f: I \to \R$ is **uniformly continuous** if and only if the following property holds:

- $\forall \epsilon > 0: \exists \delta > 0: \paren {x, y \in I, \size {x - y} < \delta \implies \size {\map f x - \map f y} < \epsilon}$

This page has been identified as a candidate for refactoring.Explain this in a separate proof pageUntil this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

It can be seen that this says exactly the same thing as the definition for metric spaces if $\R$ is considered a metric space under the Euclidean metric.

## Also see

## Sources

- 1989: Ephraim J. Borowski and Jonathan M. Borwein:
*Dictionary of Mathematics*... (previous) ... (next): Entry:**uniformly continuous**