Derivative of Real Area Hyperbolic Sine of x over a/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\dfrac \d {\d x} } {\ln \size {x - \sqrt {x^2 + a^2} } } = -\dfrac 1 {\sqrt {x^2 + a^2} }$


Proof

\(\ds -\map \arsinh {\frac x a}\) \(=\) \(\ds \map \arsinh {-\frac x a}\) Inverse Hyperbolic Sine is Odd Function
\(\ds \) \(=\) \(\ds \map \ln {-\paren {\frac x a} + \sqrt {\paren {-\frac x a}^2 + a^2} }\) Definition of Real Area Hyperbolic Sine
\(\ds \) \(=\) \(\ds \map \ln {-\frac x a + \dfrac 1 a \sqrt {x^2 + a^2} }\)
\(\ds \) \(=\) \(\ds \map \ln {-\dfrac 1 a \paren {x - \sqrt {x^2 + a^2} } }\)
\(\ds \) \(=\) \(\ds \map \ln {-x + \sqrt {x^2 + a^2} } - \ln a\) Difference of Logarithms
\(\ds \) \(=\) \(\ds \ln \size {x - \sqrt {x^2 + a^2} } - \ln a\) as $\sqrt {x^2 + a^2} > -x$
\(\ds \leadsto \ \ \) \(\ds \map {\dfrac \d {\d x} } {\ln \size {x - \sqrt {x^2 + a^2} } }\) \(=\) \(\ds \map {\dfrac \d {\d x} } {-\map \arsinh {\frac x a} + \ln a}\) Sum of Logarithms
\(\ds \) \(=\) \(\ds -\dfrac 1 {\sqrt {x^2 + a^2} } + \map {\dfrac \d {\d x} } {\ln a}\) Derivative of Real Area Hyperbolic Sine of x over a
\(\ds \) \(=\) \(\ds -\dfrac 1 {\sqrt {x^2 + a^2} } + 0\) Derivative of Constant

$\blacksquare$


Sources