Difference between Odd Squares is Divisible by 8
Jump to navigation
Jump to search
Theorem
Let $a$ and $b$ be odd integers.
Then $a^2 - b^2$ is divisible by $8$.
Proof
Let $a = 2 m + 1$, $b = 2 n + 1$.
Then:
\(\ds a^2 - b^2\) | \(=\) | \(\ds \paren {2 m + 1}^2 - \paren {2 n + 1}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {4 m^2 + 4 m + 1} - \paren {4 n^2 + 4 n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 4 \paren {m^2 - n^2} + 4 \paren {m - n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 4 \paren {m + n} \paren {m - n} + 4 \paren {m - n}\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \paren {m + n + 1} \paren {m - n}\) |
Suppose $m - n$ is even such that $m - n = 2 k$.
Then:
- $a^2 - b^2 = 4 \paren {2 k} \paren {m + n + 1} = 8 k \paren {m + n + 1}$
and so is divisible by $8$.
Suppose $m - n$ is odd such that $m - n = 2 k + 1$.
Then:
- $m + n + 1 = m + \paren {2 k + 1 + m} + 1 = 2 m + 2 k = 2 \paren {m + k}$
and so:
- $a^2 - b^2 = 4 \paren {2 k + 1} 2 \paren {m + k} = 8 \paren {2 k + 1} \paren {m + k}$
and so is again divisible by $8$.
The result follows.
$\blacksquare$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {2-1}$ Euclid's Division Lemma: Exercise $6$
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $2$: Divisibility Theory in the Integers: $2.2$ The Greatest Common Divisor: Problems $2.2$: $15 \ \text {(b)}$