Difference of Two Powers
Theorem
Let $\mathbb F$ denote one of the standard number systems, that is $\Z$, $\Q$, $\R$ and $\C$.
Let $n \in \N$ such that $n \ge 2$.
Then for all $a, b \in \mathbb F$:
\(\ds a^n - b^n\) | \(=\) | \(\ds \paren {a - b} \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {a^{n - 1} + a^{n - 2} b + a^{n - 3} b^2 + \dotsb + a b^{n - 2} + b^{n - 1} }\) |
For convenience of applicability, these results are sometimes separated into two cases for odd and even indices:
Difference of Two Odd Powers
Let $\mathbb F$ denote one of the standard number systems, that is $\Z$, $\Q$, $\R$ and $\C$.
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then for all $a, b \in \mathbb F$:
\(\ds a^{2 n + 1} - b^{2 n + 1}\) | \(=\) | \(\ds \paren {a - b} \sum_{j \mathop = 0}^{2 n} a^{2 n - j} b^j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {a^{2 n} + a^{2 n - 1} b + a^{2 n - 2} b^2 + \dotsb + a b^{2 n - 1} + b^{2 n} }\) |
Difference of Two Even Powers
Let $\GF$ denote one of the standard number systems, that is $\Z$, $\Q$, $\R$ and $\C$.
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Then for all $a, b \in \GF$:
\(\ds a^{2 n} - b^{2 n}\) | \(=\) | \(\ds \paren {a - b} \paren {a + b} \sum_{j \mathop = 0}^{n - 1} a^{2 \paren {n - j - 1} } b^{2 j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {a + b} \paren {a^{2 n - 2} + a^{2 n - 4} b^2 + a^{2 n - 6} b^4 + \dotsb + a^2 b^{2 n - 4} + b^{2 n - 2} }\) |
General Commutative Ring
The result can also be extended into the general abstract algebraic context as follows:
Let $\struct {R, +, \circ}$ be a commutative ring whose zero is $0_R$.
Let $a, b \in R$.
Let $n \in \N$ such that $n \ge 2$.
Then:
\(\ds a^n - b^n\) | \(=\) | \(\ds \paren {a - b} \circ \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} \circ b^j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \circ \paren {a^{n - 1} + a^{n - 2} \circ b + a^{n - 3} \circ b^2 + \dotsb + a \circ b^{n - 2} + b^{n - 1} }\) |
Proof 1
Let $\ds S_n = \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j$.
This can also be written:
- $\ds S_n = \sum_{j \mathop = 0}^{n - 1} b^j a^{n - j - 1}$
Consider:
- $\ds a S_n = \sum_{j \mathop = 0}^{n - 1} a^{n - j} b^j$
Taking the first term (where $j = 0$) out of the summation, we get:
- $\ds a S_n = \sum_{j \mathop = 0}^{n - 1} a^{n - j} b^j = a^n + \sum_{j \mathop = 1}^{n - 1} a^{n - j} b^j$
Similarly, consider:
- $\ds b S_n = \sum_{j \mathop = 0}^{n - 1} a^j b^{n - j}$
Taking the first term (where $j = 0$) out of the summation:
- $\ds b S_n = \sum_{j \mathop = 0}^{n - 1} a^j b^{n - j} = b^n + \sum_{j \mathop = 1}^{n - 1} a^{n - j} b^j$
This is equal to:
- $\ds b^n + \sum_{j \mathop = 1}^{n - 1} a^j b^{n - j}$
by Permutation of Indices of Summation.
So:
\(\ds \paren {a - b} S_n\) | \(=\) | \(\ds a \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j - b \sum_{j \mathop = 0}^{n - 1} a^j b^{n - j - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 0}^{n - 1} a^{n - j} b^j - \sum_{j \mathop = 0}^{n - 1} a^j b^{n - j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^n + \sum_{j \mathop = 1}^{n - 1} a^{n - j} b^j - \sum_{j \mathop = 1}^{n - 1} a^{n - j} b^j - b^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^n - b^n\) |
$\blacksquare$
Proof 2
An instance of Difference of Two Powers in a General Commutative Ring.
$\blacksquare$
Proof 3
From Sum of Geometric Sequence:
\(\ds \sum_{j \mathop = 0}^{n - 1} x^j\) | \(=\) | \(\ds \frac {x^n - 1} {x - 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\dfrac a b}^n - 1\) | \(=\) | \(\ds \paren {\dfrac a b - 1} \sum_{j \mathop = 0}^{n - 1} \paren {\dfrac a b}^j\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\dfrac {a^n - b^n} {b^n} }\) | \(=\) | \(\ds \paren {\dfrac {a - b} b} \paren {\paren {\dfrac a b}^{n - 1} + \paren {\dfrac a b}^{n - 2} + \dotsb + \paren {\dfrac a b}^1 + 1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^n - b^n\) | \(=\) | \(\ds \paren {a - b} \paren {a^{n - 1} + a^{n - 2} b + \dotsb + a b^{n - 2} + b^{n - 1} }\) | multiplying both sides by $b^n$ |
$\blacksquare$
Proof 4
The proof will proceed by the Principle of Complete Finite Induction on $\Z_{>0}$.
Let $S$ be the set defined as:
- $\ds S := \set {n \in \Z_{>0}: a^n - b^n = \paren {a - b} \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j}$
That is, $S$ is to be the set of all $n$ such that:
- $\ds a^n - b^n = \paren {a - b} \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j$
Basis for the Induction
We have that:
- $\ds a^1 - b^1 = \paren {a - b} \sum_{j \mathop = 0}^0 a^{1 - 0 - 1} b^j$
So $1 \in S$.
This is the basis for the induction.
Induction Hypothesis
It is to be shown that if $r \in S$ for all $r$ such that $1 \le r \le k$, then it follows that $k + 1 \in S$.
This is the induction hypothesis:
- $\forall r \in \Z_{>0}: 1 \le r \le k: \ds a^r - b^r = \paren {a - b} \sum_{j \mathop = 0}^{r - 1} a^{r - j - 1} b^j$
It is to be demonstrated that it follows that:
- $\ds a^{k + 1} - b^{k + 1} = \paren {a - b} \sum_{j \mathop = 0}^k a^{k - j} b^j$
Induction Step
This is the induction step:
\(\ds a^{k + 1} - b^{k + 1}\) | \(=\) | \(\ds \paren {a + b} \paren {a^k - b^k} - a b \paren {a^{k - 1} - b^{k - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a + b} \paren {a - b} \sum_{j \mathop = 0}^{k - 1} a^{k - j - 1} b^j - a b \paren {a - b} \sum_{j \mathop = 0}^{k - 2} a^{k - j - 2} b^j\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {\paren {a + b} \sum_{j \mathop = 0}^{k - 1} a^{k - j - 1} b^j - a b \sum_{j \mathop = 0}^{k - 2} a^{k - j - 2} b^j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {\sum_{j \mathop = 0}^{k - 1} a^{k - j} b^j + \sum_{j \mathop = 0}^{k - 1} a^{k - j - 1} b^{j + 1} - \sum_{j \mathop = 0}^{k - 2} a^{k - j - 1} b^{j + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \paren {\sum_{j \mathop = 0}^{k - 1} a^{k - j} b^j + a^0 b^k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - b} \sum_{j \mathop = 0}^k a^{k - j} b^j\) |
So $\forall r \in S: 0 \le r \le k: r \in S \implies k + 1 \in S$ and the result follows by the Principle of Complete Finite Induction:
- $\forall n \in \Z_{>0}: \ds a^n - b^n = \paren {a - b} \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j$
$\blacksquare$
Examples
Difference of Two Cubes
- $x^3 - y^3 = \paren {x - y} \paren {x^2 + x y + y^2}$
Difference of Two Fourth Powers
- $x^4 - y^4 = \paren {x - y} \paren {x + y} \paren {x^2 + y^2}$
Difference of Two Fifth Powers
- $x^5 - y^5 = \paren {x - y} \paren {x^4 + x^3 y + x^2 y^2 + x y^3 + y^4}$
Difference of Two Sixth Powers
- $x^6 - y^6 = \paren {x - y} \paren {x + y} \paren {x^2 + x y + y^2} \paren {x^2 - x y + y^2}$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {1-1}$ Principle of Mathematical Induction: Exercise $3$