Dirichlet Function is Periodic
Jump to navigation
Jump to search
Theorem
Let $D: \R \to \R$ be a Dirichlet function:
- $\forall x \in \R: \map D x = \begin{cases} c & : x \in \Q \\ d & : x \notin \Q \end{cases}$
Then $D$ is periodic.
Namely, every non-zero rational number is a periodic element of $D$.
Proof
Let $x \in \R$.
Let $L \in \Q$.
If $x \in \Q$, then:
\(\ds \map D {x + L}\) | \(=\) | \(\ds c\) | Rational Addition is Closed | |||||||||||
\(\ds \) | \(=\) | \(\ds \map D x\) |
If $x \notin \Q$, then:
\(\ds \map D {x + L}\) | \(=\) | \(\ds d\) | Rational Number plus Irrational Number is Irrational | |||||||||||
\(\ds \) | \(=\) | \(\ds \map D x\) |
Combining the above two shows that:
- $\forall x \in \R: \map D x = \map D {x + L}$
Hence the result.
$\blacksquare$