Rational Addition is Closed

From ProofWiki
Jump to navigation Jump to search

Theorem

The operation of addition on the set of rational numbers $\Q$ is well-defined and closed:

$\forall x, y \in \Q: x + y \in \Q$


Proof

Follows directly from the definition of rational numbers as the quotient field of the integral domain $\struct {\Z, +, \times}$ of integers.

So $\struct {\Q, +, \times}$ is a field, and therefore a priori $+$ is well-defined and closed on $\Q$.

$\blacksquare$


Sources