Element of Group is in its own Coset/Left

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group.

Let $H$ be a subgroup of $G$.

Let $x \in G$.

Let:

$x H$ be the left coset of $x$ modulo $H$.


Then:

$x \in x H$


Proof

Let $e$ be the identity of $G$.

Then:

\(\ds e\) \(\in\) \(\ds H\) Identity of Subgroup
\(\ds x\) \(=\) \(\ds x e\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds \exists h \in H: \, \) \(\ds x\) \(=\) \(\ds x h\) Existential Generalisation
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds x H\) Definition of Left Coset

$\blacksquare$


Also see


Sources