Equation of Ellipse in Reduced Form/Cartesian Frame/Parametric Form
Jump to navigation
Jump to search
Theorem
Let $K$ be an ellipse aligned in a cartesian plane in reduced form.
Let:
- the major axis of $K$ have length $2 a$
- the minor axis of $K$ have length $2 b$.
The equation of $K$ in parametric form is:
- $x = a \cos \theta, y = b \sin \theta$
Proof
Let the point $\tuple {x, y}$ satisfy the equations:
- $x = a \cos \theta$
- $y = b \sin \theta$
Then:
\(\ds \frac {x^2} {a^2} + \frac {y^2} {b^2}\) | \(=\) | \(\ds \frac {\paren {a \cos \theta}^2} {a^2} + \frac {\paren {b \sin \theta}^2} {b^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2} {a^2} \cos^2 \theta + \frac {b^2} {b^2} \sin^2 \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta + \sin^2 \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Sum of Squares of Sine and Cosine |
$\blacksquare$
Sources
- Weisstein, Eric W. "Ellipse." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Ellipse.html