Equation of Line in Complex Plane/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\C$ be the complex plane.

Let $L$ be a straight line in $\C$.


Then $L$ may be written as:

$\beta z + \overline \beta \overline z + \gamma = 0$

where $\gamma$ is real and $\beta$ may be complex.


Proof

From Equation of Straight Line in Plane, the equation for a straight line is:

$A x + B y + C = 0$

Thus:

\(\ds A x + B y + C\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \frac A 2 \paren {z + \overline z} + B y + C\) \(=\) \(\ds 0\) Sum of Complex Number with Conjugate
\(\ds \leadsto \ \ \) \(\ds \frac A 2 \paren {z + \overline z} + \frac B {2 i} \paren {z - \overline z} + C\) \(=\) \(\ds 0\) Difference of Complex Number with Conjugate
\(\ds \leadsto \ \ \) \(\ds \paren {\frac A 2 + \frac B {2 i} } z + \paren {\frac A 2 - \frac B {2 i} } \overline z + C\) \(=\) \(\ds 0\) gathering terms

The result follows by setting $\beta := \dfrac A 2 + \dfrac B {2 i}$ and $\gamma := C$.

$\blacksquare$


Sources