Equation of Straight Line in Plane/Two-Point Form/Determinant Form
Jump to navigation
Jump to search
Theorem
Let $\LL$ be a straight line embedded in a Cartesian plane, given in two-point form as:
- $\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$
Then $\LL$ can be expressed in the form:
- $\begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end {vmatrix} = 0$
Proof
\(\ds \frac {x - x_1} {x_2 - x_1}\) | \(=\) | \(\ds \frac {y - y_1} {y_2 - y_1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x - x_1} \paren {y_2 - y_1}\) | \(=\) | \(\ds \paren {x_2 - x_1} \paren {y - y_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x - x_1} \paren {y_2 - y_1} - \paren {x_2 - x_1} \paren {y - y_1}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \begin {vmatrix} x - x_1 & y - y_1 \\ x_2 - x_1 & y_2 - y_1 \end {vmatrix}\) | \(=\) | \(\ds 0\) | Determinant of Order 2 | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \begin {vmatrix} x & y & 1 \\ x - x_1 & y - y_1 & 0 \\ x_2 - x_1 & y_2 - y_1 & 0 \end {vmatrix}\) | \(=\) | \(\ds 0\) | Determinant with Unit Element in Otherwise Zero Column | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \begin {vmatrix} x & y & 1 \\ -x_1 & -y_1 & -1 \\ x_2 - x_1 & y_2 - y_1 & 0 \end {vmatrix}\) | \(=\) | \(\ds 0\) | Multiple of Row Added to Row of Determinant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 - x_1 & y_2 - y_1 & 0 \end {vmatrix}\) | \(=\) | \(\ds 0\) | Determinant with Row Multiplied by Constant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end {vmatrix}\) | \(=\) | \(\ds 0\) | Multiple of Row Added to Row of Determinant |
$\blacksquare$
Sources
- 1933: D.M.Y. Sommerville: Analytical Conics (3rd ed.) ... (previous) ... (next): Chapter $\text {II}$. The Straight Line: $4$. Special forms of the equation of a straight line: $(3)$ Line through two points