Equivalence of Definitions of Complex Inverse Secant Function
Theorem
The following definitions of the concept of Complex Inverse Secant are equivalent:
Definition 1
Let $z \in \C_{\ne 0}$ be a non-zero complex number.
The inverse secant of $z$ is the multifunction defined as:
- $\map {\sec^{-1} } z := \set {w \in \C: \map \sec w = z}$
where $\map \sec w$ is the secant of $w$.
Definition 2
Let $z \in \C_{\ne 0}$ be a non-zero complex number.
The inverse secant of $z$ is the multifunction defined as:
- $\sec^{-1} z := \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\size {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
where:
- $\sqrt {\size {1 - z^2} }$ denotes the positive square root of the complex modulus of $1 - z^2$
- $\map \arg {1 - z^2}$ denotes the argument of $1 - z^2$
- $\ln$ denotes the complex natural logarithm as a multifunction.
Proof
The proof strategy is to show that for all $z \in \C_{\ne 0}$:
- $\set {w \in \C: \sec w = z} = \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
Thus let $z \in \C$.
Definition 1 implies Definition 2
It will be demonstrated that:
- $\set {w \in \C: \sec w = z} \subseteq \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
Let $w \in \set {w \in \C: \sec w = z}$.
From Secant Exponential Formulation:
- $(1): \quad z = \dfrac 2 {e^{i w} + e^{-i w} }$
Let $v = e^{i w}$.
Then:
\(\ds z \paren {v + \frac 1 v}\) | \(=\) | \(\ds 2\) | multiplying $(1)$ by $v + \dfrac 1 v$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z v^2 - 2 v + z\) | \(=\) | \(\ds 0\) | multiplying by $v$ and rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {1 + \paren {1 - z^2}^{1/2} } z\) | Quadratic Formula |
Let $s = 1 - z^2$.
Then:
\(\ds v\) | \(=\) | \(\ds \frac {1 + s^{1/2} } z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {1 + \sqrt {\cmod s} \paren {\map \cos {\dfrac {\map \arg s} 2} + i \map \sin {\dfrac {\map \arg s} 2} } } z\) | Definition of Complex Square Root | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \ln v\) | \(=\) | \(\ds \map \ln {\frac {1 + \sqrt {\cmod s} \paren {\map \cos {\dfrac {\map \arg s} 2} + i \map \sin {\dfrac {\map \arg s} 2} } } z}\) | where $\ln$ denotes the Complex Natural Logarithm |
We have that:
\(\ds v\) | \(=\) | \(\ds e^{i w}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln v\) | \(=\) | \(\ds \map \ln {e^{i w} }\) | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds i w + 2 k' \pi i: k' \in \Z\) | Definition of Complex Natural Logarithm |
Thus from $(2)$ and $(3)$:
\(\ds i w + 2 k' \pi i\) | \(=\) | \(\ds \map \ln {\frac {1 + \sqrt {\cmod s} \paren {\map \cos {\dfrac {\map \arg s} 2} + i \map \sin {\dfrac {\map \arg s} 2} } } z}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(=\) | \(\ds \frac 1 i \map \ln {\frac {1 + \sqrt {\cmod s} \paren {\map \cos {\dfrac {\map \arg s} 2} + i \map \sin {\dfrac {\map \arg s} 2} } } z} + 2 k \pi\) | putting $k = -k'$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(=\) | \(\ds \dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi\) | Definition of Exponential Form of Complex Number |
Thus by definition of subset:
- $\set {w \in \C: \sec w = z} \subseteq \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
$\Box$
Definition 2 implies Definition 1
It will be demonstrated that:
- $\set {w \in \C: \sec w = z} \supseteq \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
Let $w \in \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$.
Then:
\(\ds \exists k \in \Z: \, \) | \(\ds i w + 2 \paren {-k} \pi i\) | \(=\) | \(\ds \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{i w + 2 \paren {-k} \pi i}\) | \(=\) | \(\ds \dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z\) | Definition of Complex Natural Logarithm | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{i w}\) | \(=\) | \(\ds \dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z\) | Complex Exponential Function has Imaginary Period | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds z e^{i w} - 1\) | \(=\) | \(\ds \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {z e^{i w} - 1}^2\) | \(=\) | \(\ds \cmod {1 - z^2} e^{i \arg \paren {1 - z^2} }\) | Roots of Complex Number | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {z e^{i w} - 1}^2\) | \(=\) | \(\ds 1 - z^2\) | Definition of Exponential Form of Complex Number | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds z^2 e^{2 i w} - 2 z e^{i w} + 1\) | \(=\) | \(\ds 1 - z^2\) | Square of Difference | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds z^2 e^{2 i w} - 2 z e^{i w}\) | \(=\) | \(\ds - z^2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z e^{2 i w} + z\) | \(=\) | \(\ds 2 e^{i w}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z \paren {e^{i w} + \frac 1 {e^{i w} } }\) | \(=\) | \(\ds 2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \frac 2 {e^{i w} + e^{-i w} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \sec w\) | Secant Exponential Formulation | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(\in\) | \(\ds \set {w \in \C: z = \sec w}\) |
Thus by definition of superset:
- $\set {w \in \C: \sec w = z} \supseteq \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
$\Box$
Thus by definition of set equality:
- $\set {w \in \C: \sec w = z} = \set {\dfrac 1 i \map \ln {\dfrac {1 + \sqrt {\cmod {1 - z^2} } e^{\paren {i / 2} \map \arg {1 - z^2} } } z} + 2 k \pi: k \in \Z}$
$\blacksquare$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |