Erdős-Moser Equation

From ProofWiki
Jump to navigation Jump to search







Theorem

The Erdős-Moser Equation is the Diophantine equation:

\(\ds \sum_{j \mathop = 1}^k j^p\) \(=\) \(\ds 1 + 2^p + 3^p + \cdots + k^p\)
\(\ds \) \(=\) \(\ds \paren {k + 1}^p\)

where $k, p \in \N$.


Its only solution is $k = 2$ and $p = 1$:

$1^1 + 2^1 = 3^1$




Proof

Let $\map {B_n} x$ denote the $n$th Bernoulli polynomial:

$\ds \map {B_n} x = \sum_{k \mathop = 0}^n \binom n k b_{n - k} x^k$

where $b_n$ denotes the $n$th Bernoulli number.

Lemma 1

Erdös-Moser equation is equivalent:

$(1): \quad \ds \sum_{k \mathop = 0}^x k^p \equiv \dfrac {\map {B_{p + 1} } {x + 1} } {p + 1} = \paren {x + 1}^p$


Proof

By Faulhaber's Formula:

$\ds \sum_{k \mathop = 0}^x k^p = \dfrac {\map {B_{p + 1} } {x + 1} - \map {B_{p + 1} } 0} {p + 1}$



It is proved that for another solution of the Erdös-Moser equation $p + 1$ must be odd and $\map {B_{p + 1} } 0$ with odd subscripts is equal to zero.




Lemma 2

$(2): \quad \map {B_{p + 1} } {x + 1} - \map {B_p} x = \paren {p + 1} x^p$
$(3): \quad \map {B_{p + 1} } {x + 2} - \map {B_p} {x + 1} = \paren {p + 1} \paren {x + 1}^p$


Proof

General identity involving Bernoulli polynomials:

$\map {B_n} {x + 1} - \map {B_n} x = n x^{n - 1}$




Lemma 3

$(4): \quad \dfrac {\map {B_{p + 1} } {x + 1} } {\map {B_{p + 1} } x} = \dfrac {\paren {x + 1}^p} {\paren {x + 1}^p - x^p}$


Proof

\(\text {(5)}: \quad\) \(\ds \dfrac {\map {B_{p + 1} } {x + 1} } {x^p} - \dfrac {\map {B_{p + 1} } x} {x^p}\) \(=\) \(\ds p + 1\) expressing $p + 1$ from $(2)$
\(\ds \map {B_{p + 1} } {x + 1}\) \(=\) \(\ds \paren {x + 1}^p \paren {\dfrac {\map {B_{p + 1} } {x + 1} } {x^p} - \dfrac {\map {B_{p + 1} } x} {x^p} }\) substituting left hand side of $(5)$ for $p + 1$ in $(1)$
\(\ds \dfrac {\map {B_{p + 1} } {x + 1} } {\map {B_{p + 1} } x}\) \(=\) \(\ds \dfrac {\paren {x + 1}^p} {\paren {x + 1}^p - x^p}\) elementary rearrangements

$\Box$


Theorem 1

The Erdös-Moser equation has other solution than $ 1 + 2 = 3$ if and only if:

$(6): \quad \dfrac {\map {B_{p + 1} } {x + 2} } {\map {B_{p + 1} } {x + 1} } = 2$

where $x, p \in \N \land x > 2 \land p > 1$.


Proof

\(\text {(7)}: \quad\) \(\ds \map {B_{p + 1} } {x + 1}\) \(=\) \(\ds \paren {p + 1} \paren {x + 1}^p\) rearranging $(1)$
\(\ds \map {B_{p + 1} } {x + 2} - \map {B_p} {x + 1}\) \(=\) \(\ds \map {B_{p + 1} } {x + 1}\) equating $(7)$ with $(3)$
\(\ds \dfrac {\map {B_{p + 1} } {x + 2} } {\map {B_{p + 1} } {x + 1} }\) \(=\) \(\ds 2\) elementary rearrangements

$\Box$


Theorem 2

The Erdös-Moser equation has no solution for $p > 1$.


Proof

\(\text {(8)}: \quad\) \(\ds \dfrac {\map {B_{p + 1} } {x + 2} } {\map {B_{p + 1} } {x + 1} }\) \(=\) \(\ds \dfrac {\paren {x + 2}^p} {\paren {x + 2}^p - \paren {x + 1}^p}\) modification of $(4)$
\(\text {(9)}: \quad\) \(\ds 2\) \(=\) \(\ds \dfrac {\paren {x + 2}^p} {\paren {x + 2}^p - \paren {x + 1}^p}\) equating RHS of $(6)$ and RHS of $(8)$
\(\ds 2\) \(=\) \(\ds \dfrac {\paren {x + 2}^p} {\paren {x + 1}^p}\) elementary rearrangements of $(9)$
\(\ds \sqrt [p] 2\) \(=\) \(\ds \dfrac {x + 2} {x + 1}\) impossible, since $\sqrt [p] 2$ is for $p > 1$ irrational

The sum of $p$th powers for $p = 1$:

\(\ds \sum_{k \mathop = 0}^x k^1\) \(=\) \(\ds \dfrac {\map {B_2} {x + 1} - \map {B_2} 0} 2\)
\(\text {(9)}: \quad\) \(\ds \) \(=\) \(\ds \dfrac {x^2 + x} 2\)

To prove this theorem we use $(9)$:

\(\ds \dfrac {x^2 + x} 2\) \(=\) \(\ds \paren {x + 1}\) Erdös-Moser equation, where $p = 1$
\(\ds x^2 - x\) \(=\) \(\ds 2\) elementary rearrangements
\(\ds x\) \(=\) \(\ds 2\)


$\blacksquare$


Source of Name

This entry was named for Paul Erdős and Leo Moser.


Sources

  • 1953: Leo MoserOn the diophantine equation $1^n + 2^n + 3^n + \dotsb + \paren {m − 1}^n = m^n$ (Scripta Math. Vol. 19: pp. 84 – 88)