Euler's Sine Identity/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin z = \dfrac {e^{i z} - e^{-i z} } {2 i}$


Proof

\(\text {(1)}: \quad\) \(\ds e^{i z}\) \(=\) \(\ds \cos z + i \sin z\) Euler's Formula
\(\text {(2)}: \quad\) \(\ds e^{-i z}\) \(=\) \(\ds \cos z - i \sin z\) Euler's Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds e^{i z} - e^{-i z}\) \(=\) \(\ds \paren {\cos z + i \sin z} - \paren {\cos z - i \sin z}\) $(1) - (2)$
\(\ds \) \(=\) \(\ds 2 i \sin z\) simplifying
\(\ds \leadsto \ \ \) \(\ds \frac {e^{i z} - e^{-i z} } {2 i}\) \(=\) \(\ds \sin z\)

$\blacksquare$


Sources