Evaluation Linear Transformation is Linear Transformation
Jump to navigation
Jump to search
Theorem
Let $R$ be a commutative ring.
Let $G$ be an $R$-module.
Let $G^*$ be the algebraic dual of $G$.
Let $G^{**}$ be the algebraic dual of $G^*$.
Let the mapping $J: G \to G^{**}$ be the evaluation linear transformation from $G$ into $G^{**}$.
For each $x \in G$, $x^\wedge: G^* \to R$ is defined as:
- $\forall t' \in G^*: \map {x^\wedge} {t'} = \map {t'} x$
Let the mapping $J: G \to G^{**}$ be the evaluation linear transformation from $G$ into $G^{**}$ defined as:
- $\forall x \in G: \map J x = x^\wedge$
where for each $x \in G$, $x^\wedge: G^* \to R$ is defined as:
- $\forall t' \in G^*: \map {x^\wedge} {t'} = \map {t'} x$
Then:
- $(1): \quad x^\wedge \in G^{**}$
- $(2): \quad J$ is a linear transformation.
Proof
$(1):$ First we show that $x^\wedge \in G^{**}$:
$(2):$ Then we show that $J: G \to G^{**}$ is a linear transformation:
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): $\S 28$