Expectation of Binomial Distribution
Theorem
Let $X$ be a discrete random variable with the binomial distribution with parameters $n$ and $p$ for some $n \in \N$ and $0 \le p \le 1$.
Then the expectation of $X$ is given by:
- $\expect X = n p$
Proof 1
From the definition of expectation:
- $\ds \expect X = \sum_{x \mathop \in \Omega_X} x \map \Pr {X = x}$
Thus:
\(\ds \expect X\) | \(=\) | \(\ds \sum_{k \mathop = 0}^n k \binom n k p^k q^{n - k}\) | Definition of Binomial Distribution, with $p + q = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n k \binom n k p^k q^{n - k}\) | since for $k = 0$, $k \dbinom n k p^k q^{n - k} = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n n \binom {n - 1} {k - 1} p^k q^{n - k}\) | Factors of Binomial Coefficient: $k \dbinom n k = n \dbinom {n - 1} {k - 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds n p \sum_{k \mathop = 1}^n \binom {n - 1} {k - 1} p^{k - 1} q^{\paren {n - 1} - \paren {k - 1} }\) | taking out $n p$ and using $\paren {n - 1} - \paren {k - 1} = n - k$ | |||||||||||
\(\ds \) | \(=\) | \(\ds n p \sum_{j \mathop = 0}^m \binom m j p^j q^{m - j}\) | putting $m = n - 1, j = k - 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds n p\) | Binomial Theorem and $p + q = 1$ |
$\blacksquare$
Proof 2
From Bernoulli Process as Binomial Distribution, we see that $X$ as defined here is a sum of discrete random variables $Y_i$ that model the Bernoulli distribution:
- $\ds X = \sum_{i \mathop = 1}^n Y_i$
Each of the Bernoulli trials is independent of each other, by definition of a Bernoulli process.
It follows that:
\(\ds \expect X\) | \(=\) | \(\ds \expect {\sum_{i \mathop = 1}^n Y_i }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = 1}^n \expect {Y_i}\) | Sum of Expectations of Independent Trials | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = 1}^n p\) | Expectation of Bernoulli Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds n p\) | Sum of Identical Terms |
$\blacksquare$
Proof 3
From the Probability Generating Function of Binomial Distribution, we have:
- $\map {\Pi_X} s = \paren {q + p s}^n$
where $q = 1 - p$.
From Expectation of Discrete Random Variable from PGF, we have:
- $\expect X = \map {\Pi'_X} 1$
We have:
\(\ds \map {\Pi'_X} s\) | \(=\) | \(\ds \map {\frac \d {\d s} } {q + p s}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n p \paren {q + p s}^{n - 1}\) | Derivatives of PGF of Binomial Distribution |
Plugging in $s = 1$:
- $\map {\Pi'_X} 1 = n p \paren {q + p}$
Hence the result, as $q + p = 1$.
$\blacksquare$
Proof 4
From Moment Generating Function of Binomial Distribution, the moment generating function of $X$, $M_X$, is given by:
- $\ds \map {M_X} t = \paren {1 - p + p e^t}^n$
By Moment in terms of Moment Generating Function:
- $\ds \expect X = \map {M_X'} 0$
We have:
\(\ds \map {M_X'} t\) | \(=\) | \(\ds \frac \d {\d t} \paren {1 - p + p e^t}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\frac \d {\d t} } {1 - p + p e^t} \map {\frac \d {\map \d {1 - p + p e^t} } } {1 - p + p e^t}^n\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds n p e^t \paren {1 - p + p e^t}^{n - 1}\) | Derivative of Exponential Function, Derivative of Power |
Setting $t = 0$ gives:
\(\ds \expect X\) | \(=\) | \(\ds n p e^0 \paren {1 - p + p e^0}^{n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n p \paren {1 - p + p}^{n - 1}\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds n p\) |
$\blacksquare$
Sources
- 1986: Geoffrey Grimmett and Dominic Welsh: Probability: An Introduction ... (previous) ... (next): $\S 2.4$: Expectation: Exercise $9$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): binomial distribution
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): binomial distribution
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): binomial distribution
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $13$: Probability distributions
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $15$: Probability distributions