Formulation 1 Rank Axioms Implies Rank Function of Matroid/Lemma 5/Proof 1

From ProofWiki
Jump to navigation Jump to search



Theorem

Let

$U \in \mathscr I$
$V \subseteq S$
$\card U < \card V$


We prove the contrapositive statement:

$\paren{\forall x \in V \setminus U : U \cup \set x \notin \mathscr I} \implies V \notin \mathscr I$


Let:

$\forall x \in V \setminus U: U \cup \set x \notin \mathscr I$

That is, by definition of $\mathscr I$:

$\forall x \in V \setminus U : \map \rho {U \cup \set x} \ne \card {U \cup \set x}$


We have:

\(\ds \card V\) \(>\) \(\ds \card U\) by hypothesis
\(\ds \) \(=\) \(\ds \map \rho U\) As $U \in \mathscr I$
\(\ds \) \(=\) \(\ds \map \rho {U \cup V}\) Lemma 3
\(\ds \) \(\ge\) \(\ds \map \rho V\) Lemma 1

Hence:

$V \notin \mathscr I$


It follows:

$M$ satisfies matroid axiom $(\text I 3)$.


Lemma 2

$\forall A \subseteq S: \map \rho A \le \card A$


Proof

Let

$X \in \mathscr I$


Aiming for a contradiction, suppose

$\exists Y \subseteq X : Y \notin \mathscr I$

Let:

$Y_0 \subseteq X : \card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$


By definition of $\mathscr I$:

$Y_0 \notin \mathscr I \leadsto \map \rho {Y_0} \ne \card {Y_0}$

From Lemma 2:

$\map \rho {Y_0} < \card {Y_0}$


As $X \in \mathscr I$ then:

$Y_0 \ne X$

Hence:

$Y_0$ is a proper subset of $X$

From Set Difference with Proper Subset:

$X \setminus Y_0 \ne \O$


Let $y \in X \setminus Y_0$.


We have:

\(\ds \card {Y_0} + 1\) \(=\) \(\ds \card {Y_0 \cup \set y}\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \map \rho {Y_0 \cup \set y}\) As $\card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$
\(\ds \) \(\le\) \(\ds \map \rho {Y_0} + 1\) Rank axiom $(\text R 2)$
\(\ds \) \(<\) \(\ds \card {Y_0} + 1\) As $\map \rho {Y_0} < \card {Y_0}$

This is a contradiction.


So:

$\forall Y \subseteq X : Y \in \mathscr I$

Hence:

$M$ satisfies matroid axiom $(\text I 2)$.

$\blacksquare$


Sources