Fresnel Cosine Integral Function of Zero
Jump to navigation
Jump to search
Theorem
- $\map {\operatorname C} 0 = 0$
where $\operatorname C$ denotes the Fresnel cosine integral function.
Proof
By Fresnel Cosine Integral Function is Odd, $\operatorname C$ is an odd function.
Therefore, by Odd Function of Zero is Zero:
- $\map {\operatorname C} 0 = 0$
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $35.23$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $36.23.$