Group Action Induces Equivalence Relation

From ProofWiki
Jump to navigation Jump to search


Let $G$ be a group whose identity is $e$.

Let $X$ be a set.

Let $*: G \times S \to S$ be a group action.

Let $\RR_G$ be the relation induced by $G$, that is:

$x \mathrel {\RR_G} y \iff y \in \Orb x$


$\Orb x$ denotes the orbit of $x \in X$.


$\RR_G$ is an equivalence relation.
The equivalence class of an element is its orbit.


Let $x \mathrel {\RR_G} y \iff y \in \Orb x$.

Checking in turn each of the criteria for equivalence:


$x = e * x \implies x \in \Orb x$ from the definition of group action.

Thus $\RR_G$ is reflexive.



\(\ds y\) \(\in\) \(\ds \Orb x\)
\(\ds \leadsto \ \ \) \(\ds \exists g \in G: \, \) \(\ds y\) \(=\) \(\ds g * x\)
\(\ds \leadsto \ \ \) \(\ds g^{-1} * \paren {g * x}\) \(=\) \(\ds g^{-1} * y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds g^{-1} * y\)
\(\ds \leadsto \ \ \) \(\ds \exists g^{-1} \in G: \, \) \(\ds x\) \(=\) \(\ds g^{-1} * y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds \Orb y\)

Thus $\RR_G$ is symmetric.



\(\ds y\) \(\in\) \(\ds \Orb x\)
\(\ds \land \ \ \) \(\ds z\) \(\in\) \(\ds \Orb y\)
\(\ds \leadsto \ \ \) \(\ds \exists g_1 \in G: \, \) \(\ds y\) \(=\) \(\ds g_1 * x\)
\(\ds \land \ \ \) \(\ds \exists g_2 \in G: \, \) \(\ds z\) \(=\) \(\ds g_2 * y\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds g_2 * \paren {g_1 * x}\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \paren {g_2 g_1} * x\)
\(\ds \leadsto \ \ \) \(\ds z\) \(\in\) \(\ds \Orb x\)

Thus $\RR_G$ is transitive.


So $\RR_G$ has been shown to be an equivalence relation.

Hence the result, by definition of an equivalence class.


Also see