Group Homomorphism/Examples/Mapping from D3 to Parity Group
Examples of Group Homomorphisms
Let $D_3$ denote the symmetry group of the equilateral triangle:
\(\ds e\) | \(:\) | \(\ds \paren A \paren B \paren C\) | Identity mapping | |||||||||||
\(\ds p\) | \(:\) | \(\ds \paren {ABC}\) | Rotation of $120 \degrees$ anticlockwise about center | |||||||||||
\(\ds q\) | \(:\) | \(\ds \paren {ACB}\) | Rotation of $120 \degrees$ clockwise about center | |||||||||||
\(\ds r\) | \(:\) | \(\ds \paren {BC}\) | Reflection in line $r$ | |||||||||||
\(\ds s\) | \(:\) | \(\ds \paren {AC}\) | Reflection in line $s$ | |||||||||||
\(\ds t\) | \(:\) | \(\ds \paren {AB}\) | Reflection in line $t$ |
Let $G$ denote the parity group, defined as:
- $\struct {\set {1, -1}, \times}$
where $\times$ denotes conventional multiplication.
Let $\theta: D_3 \to G$ be the mapping defined as:
- $\forall x \in D_3: \map \theta x = \begin{cases} 1 & : \text{$x$ is a rotation} \\ -1 & : \text{$x$ is a reflection} \end{cases}$
Then $\theta$ is a (group) homomorphism, where:
\(\ds \map \ker \theta\) | \(=\) | \(\ds \set {e, p, q}\) | ||||||||||||
\(\ds \Img \theta\) | \(=\) | \(\ds G\) |
Proof
Let $x, y \in D_3$.
Let $P$ denote the subset of $D_3$ consisting of the rotations:
- $P := \set {e, p, q}$
Let $R$ denote the subset of $D_3$ consisting of the reflections:
- $R := \set {r, s, t}$
It is noted that $e$ is classified as a rotation of zero angle.
The Cayley table for $D_3$ is:
- $\begin{array}{c|ccc|ccc} \circ & e & p & q & r & s & t \\ \hline e & e & p & q & r & s & t \\ p & p & q & e & s & t & r \\ q & q & e & p & t & r & s \\ \hline r & r & t & s & e & q & p \\ s & s & r & t & p & e & q \\ t & t & s & r & q & p & e \\ \end{array}$
Direct reference to this Cayley table gives us:
\(\ds \forall x, y \in P: \, \) | \(\ds x \circ y\) | \(\in\) | \(\ds P\) | |||||||||||
\(\ds \forall x, y \in R: \, \) | \(\ds x \circ y\) | \(\in\) | \(\ds P\) | |||||||||||
\(\ds \forall x \in P, y \in R: \, \) | \(\ds x \circ y\) | \(\in\) | \(\ds R\) | |||||||||||
\(\ds \forall x \in R, y \in P: \, \) | \(\ds x \circ y\) | \(\in\) | \(\ds R\) |
Thus we have:
\(\ds \forall x, y \in P: \, \) | \(\ds \map \phi x \times \map \phi y\) | \(=\) | \(\ds 1 \times 1\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x \circ y}\) |
\(\ds \forall x, y \in R: \, \) | \(\ds \map \phi x \times \map \phi y\) | \(=\) | \(\ds \paren {-1} \times \paren {-1}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x \circ y}\) |
\(\ds \forall x \in P, y \in R: \, \) | \(\ds \map \phi x \times \map \phi y\) | \(=\) | \(\ds 1 \times \paren {-1}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds -1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x \circ y}\) |
\(\ds \forall x \in R, y \in P: \, \) | \(\ds \map \phi x \times \map \phi y\) | \(=\) | \(\ds \paren {-1} \times 1\) | |||||||||||
\(\ds \) | \(=\) | \(\ds -1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x \circ y}\) |
By definition, $\map \ker \phi$ is the set of all elements of $D_3$ which map to $1$.
Hence by definition:
- $\map \ker \phi = \set {e, p, q}$
Also by definition, $\Img \phi$ is the set of all elements of $G$ which are mappped to by $\phi$.
Hence by definition:
- $\Img \phi = \set {1, -1}$
Hence the result.
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $8$: The Homomorphism Theorem: Exercise $2$