Integral over 2 pi of Sine of n x
Jump to navigation
Jump to search
Theorem
Let $m \in \Z$ be an integer.
Then:
- $\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \rd x = 0$
Proof
Let $m \ne n$.
\(\ds \int \sin m x \rd x\) | \(=\) | \(\ds -\frac {\cos m x} m + C\) | Primitive of $\sin m x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \rd x\) | \(=\) | \(\ds \intlimits {-\frac {\cos m x} m} \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-\frac {\map \cos {m \paren {\alpha + 2 \pi} } } m} - \paren {-\frac {\cos m \alpha} a}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-\frac {\cos m \alpha} m} - \paren {-\frac {\cos m \alpha} a}\) | Corollary to Cosine of Angle plus Full Angle | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | after simplification |
$\Box$
Let $m = 0$.
\(\ds \int \sin 0 x \rd x\) | \(=\) | \(\ds \int 0 \rd x\) | Sine of Zero is Zero | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin 0 x \rd x\) | \(=\) | \(\ds \bigintlimits 0 \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 2$. Fourier Series: $(4)$