Intersection Distributes over Symmetric Difference
Jump to navigation
Jump to search
Theorem
Intersection is distributive over symmetric difference:
\(\ds \paren {R \symdif S} \cap T\) | \(=\) | \(\ds \paren {R \cap T} \symdif \paren {S \cap T}\) | ||||||||||||
\(\ds T \cap \paren {R \symdif S}\) | \(=\) | \(\ds \paren {T \cap R} \symdif \paren {T \cap S}\) |
Proof
From Set Intersection Distributes over Set Difference, we have:
- $\paren {R \setminus S} \cap T = \paren {R \cap T} \setminus \paren {S \cap T}$
So:
\(\ds \paren {R \cap T} \symdif \paren {S \cap T}\) | \(=\) | \(\ds \paren {\paren {R \cap T} \setminus \paren {S \cap T} } \cup \paren {\paren {S \cap T} \setminus \paren {R \cap T} }\) | Definition of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {R \setminus S} \cap T} \cup \paren {\paren {S \setminus R} \cap T}\) | Set Intersection Distributes over Set Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {R \setminus S} \cup \paren {S \setminus R} } \cap T\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \symdif S} \cap T\) | Definition of Symmetric Difference |
The second part of the proof is a direct consequence of the fact that Intersection is Commutative.
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $1$. Sets: Exercise $7 \ \text{(iv)}$
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems: Exercise $14$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): symmetric difference: $\text {(v)}$