Symmetric Difference is Associative
Theorem
Symmetric difference is associative:
- $R \symdif \paren {S \symdif T} = \paren {R \symdif S} \symdif T$
Proof 1
We can directly expand the expressions for $R \symdif \paren {S \symdif T}$ and $\paren {R \symdif S} \symdif T$, and see that they come to the same thing.
Expanding the right hand side:
\(\ds \) | \(\) | \(\ds \paren {R \symdif S} \symdif T\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\paren {R \cap \overline S} \cup \paren {\overline R \cap S} } \cap \overline T} \cup \paren {\overline {R \symdif S} \cap T}\) | Definition 3 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\paren {R \cap \overline S} \cup \paren {\overline R \cap S} } \cap \overline T} \cup \paren {\overline {\paren {\paren {R \cup S} \cap \paren {\overline R \cup \overline S} } } \cap T}\) | Definition 4 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\paren {\overline {\paren {R \cup S} } \cup \overline {\paren {\overline R \cup \overline S} } } \cap T}\) | Intersection Distributes over Union and De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\paren {\paren {\overline R \cap \overline S} \cup \paren {R \cap S} } \cap T}\) | De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\overline R \cap \overline S \cap T} \cup \paren {R \cap S \cap T}\) | Intersection Distributes over Union |
Expanding the left hand side:
\(\ds \) | \(\) | \(\ds R \symdif \paren {S \symdif T}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline {S \symdif T} } \cup \paren {\overline R \cap \paren {\paren {S \cap \overline T} \cup \paren {\overline S \cap T} } }\) | Definition 3 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline {\paren {\paren {S \cup T} \cap \paren {\overline S \cup \overline T} } } } \cup \paren {\overline R \cap \paren {\paren {S \cap \overline T} \cup \paren {\overline S \cap T} } }\) | Definition 4 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \paren {\overline {\paren {S \cup T} } \cup \overline {\paren {\overline S \cup \overline T} } } } \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\overline R \cap \overline S \cap T}\) | Intersection Distributes over Union and De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \paren {\paren {\overline S \cap \overline T} \cup \paren {S \cap T} } } \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\overline R \cap \overline S \cap T}\) | De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {R \cap S \cap T} \cup \paren {\overline R \cap S \cap \overline T} \cup \paren {\overline R \cap \overline S \cap T}\) | Intersection Distributes over Union |
From Union is Commutative it is seen that the left hand side and right hand side are the same, and the result is proved.
$\blacksquare$
Proof 2
There is another way of doing this.
Expanding the right hand side:
\(\ds \) | \(\) | \(\ds \paren {R \symdif S} \symdif T\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\paren {R \cup S} \cap \paren {\overline R \cup \overline S} } \cup T} \cap \paren {\overline {R \symdif S} \cup \overline T}\) | Definition 4 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\paren {R \cup S} \cap \paren {\overline R \cup \overline S} } \cup T} \cap \paren {\overline {\paren {\paren {R \cap \overline S} \cup \paren {\overline R \cap S} } } \cup \overline T}\) | Definition 3 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {\overline R \cup \overline S \cup T} \cap \paren {\paren {\overline {\paren {R \cap \overline S} } \cap \overline {\paren {\overline R \cap S} } } \cup \overline T}\) | Union Distributes over Intersection and De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {\overline R \cup \overline S \cup T} \cap \paren {\paren {\paren {\overline R \cup S} \cap \paren {R \cup \overline S} } \cup \overline T}\) | De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {\overline R \cup \overline S \cup T} \cap \paren {\overline R \cup S \cup \overline T} \cap \paren {R \cup \overline S \cup \overline T}\) | Union Distributes over Intersection |
Expanding the left hand side:
\(\ds \) | \(\) | \(\ds R \symdif \paren {S \symdif T}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup \paren {\paren {S \cup T} \cap \paren {\overline S \cup \overline T} } } \cap \paren {\overline R \cup \overline {S \symdif T} }\) | Definition 4 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup \paren {\paren {S \cup T} \cap \paren {\overline S \cup \overline T} } } \cap \paren {\overline R \cup \overline {\paren {\paren {S \cap \overline T} \cup \paren {\overline S \cap T} } } }\) | Definition 3 of Symmetric Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {R \cup \overline S \cup \overline T} \cap \paren {\overline R \cup \paren {\overline {\paren {S \cap \overline T} } \cap \overline {\paren {\overline S \cap T} } } }\) | Union Distributes over Intersection and De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {R \cup \overline S \cup \overline T} \cap \paren {\overline R \cup \paren {\paren {\overline S \cup T} \cap \paren {S \cup \overline T} } }\) | De Morgan | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cup S \cup T} \cap \paren {R \cup \overline S \cup \overline T} \cap \paren {\overline R \cup \overline S \cup T} \cap \paren {\overline R \cup S \cup \overline T}\) | Union Distributes over Intersection |
From Intersection is Commutative, it can be seen that the left hand side and right hand side are the same, and the result is proved.
$\blacksquare$
Comment
This illustrates that you can express the symmetric difference of three sets as the union of four intersections (which seems more intuitively obvious) as well as the intersection of four unions (which is not quite so obvious).
Also see
Sources
- 1960: Paul R. Halmos: Naive Set Theory ... (previous) ... (next): $\S 5$: Complements and Powers
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $1$. Sets: Exercise $7 \ \text{(iii)}$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $1$: The Notation and Terminology of Set Theory: $\S 8 \alpha$
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems: Exercise $14$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Sets and Logic: Exercise $9 \ \text{(ii)}$
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $\S 2$: Problem $6 \ \text{(ii)}$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): symmetric difference: $\text {(iv)}$
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): algebra of sets: $\text {(i)}$