Set Difference is not Associative
Jump to navigation
Jump to search
Theorem
Let $R, S, T$ be sets.
The expression:
- $\paren {R \setminus S} \setminus T = R \setminus \paren {S \setminus T}$
holds exactly when $R \cap T = \O$.
Here $R \setminus S$ denotes set difference.
Thus, set difference is not associative.
Proof
We assume a universal set $\mathbb U$ such that $R, S, T \subseteq \mathbb U$.
We have the identity Set Difference as Intersection with Complement:
- $R \setminus S = R \cap \overline S$
where $\overline S$ is the set complement of $S$:
- $\overline S = \relcomp {\Bbb U} S$
Thus we can represent the two expressions as follows:
\(\ds \paren {R \setminus S} \setminus T\) | \(=\) | \(\ds \paren {R \cap \overline S} \cap \overline T\) | Set Difference as Intersection with Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds R \cap \overline S \cap \overline T\) | Intersection is Associative |
For the second:
\(\ds \) | \(\) | \(\ds R \setminus \paren {S \setminus T}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds R \cap \overline {\paren {S \cap \overline T} }\) | Set Difference as Intersection with Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds R \cap \paren {\overline S \cup \overline {\paren {\overline T} } }\) | De Morgan's Laws: Complement of Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds R \cap \paren {\overline S \cup T}\) | Complement of Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S} \cup \paren {R \cap T}\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \mathbb U} \cup \paren {R \cap \mathbb U \cap T}\) | Intersection with Universal Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \paren {T \cup \overline T} } \cup \paren {R \cap \paren {S \cup \overline S} \cap T}\) | Union with Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap T} \cup \paren {R \cap \overline S \cap \overline T}\) | ||||||||||||
\(\, \ds \cup \, \) | \(\ds \) | \(\) | \(\ds \paren {R \cap S \cap T} \cup \paren {R \cap \overline S \cap T}\) | Intersection Distributes over Union | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap T} \cup \paren {R \cap \overline S \cap \overline T} \cup \paren {R \cap S \cap T}\) | Set Union is Idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {R \cap \paren {S \cup \overline S} \cap T}\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {R \cap \mathbb U \cap T}\) | Union with Complement | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {R \cap \overline S \cap \overline T} \cup \paren {R \cap T}\) | Intersection with Universal Set |
As can be seen, this full expansion of the second expression can be expressed:
- $R \setminus \paren {S \setminus T} = \paren {\paren {R \setminus S} \setminus T} \cup \paren {R \cap T}$
It directly follows from Intersection with Empty Set that:
- $R \setminus \paren {S \setminus T} = \paren {R \setminus S} \setminus T \iff R \cap T = \O$
$\blacksquare$
Also see
Sources
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems: Exercise $15$