Intersection of Exteriors of Singleton Rationals is Irrationals

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\Q, \tau_d}$ be the rational number space under the usual (Euclidean) topology $\tau_d$.

Let $B_\alpha$ be the singleton containing the rational number $\alpha$.

Then:

$\ds \bigcap_{\alpha \mathop \in \Q} B_\alpha^e = \R \setminus \Q$

where $B_\alpha^e$ denotes the exterior of $B_\alpha$ in $\R$.


Proof

\(\ds \bigcap_{\alpha \mathop \in \Q} B_\alpha^e\) \(=\) \(\ds \bigcap_{\alpha \mathop \in \Q} \R \setminus B_\alpha^-\) Definition 1 of Exterior
\(\ds \) \(=\) \(\ds \bigcap_{\alpha \mathop \in \Q} \R \setminus B_\alpha\) Real Number is Closed in Real Number Line
\(\ds \) \(=\) \(\ds \R \setminus \bigcup_{\alpha \mathop \in \Q} B_\alpha\) De Morgan's Laws: Difference with Union
\(\ds \) \(=\) \(\ds \R \setminus \Q\) Definition of Set of Rational Numbers

$\blacksquare$


Sources