Inverse Hyperbolic Tangent/Examples/i
Jump to navigation
Jump to search
Example of Inverse Hyperbolic Tangent
- $\inv \tanh i = \dfrac {\paren {4 k + 1} \pi i} 4$
Proof
Recall the definition of Inverse Hyperbolic Tangent:
- $\inv \tanh i := \set {z \in \C: \tanh z = i}$
Thus:
\(\ds \tanh z\) | \(=\) | \(\ds i\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {\map \exp {2 z} - 1} {\map \exp {2 z} + 1}\) | \(=\) | \(\ds i\) | Definition 3 of Hyperbolic Tangent | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {2 z} - 1\) | \(=\) | \(\ds i \paren {\map \exp {2 z} + 1}\) | rearranging | ||||||||||
\(\ds \) | \(=\) | \(\ds i \map \exp {2 z} + i\) | rearranging | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {2 z} \paren {1 - i}\) | \(=\) | \(\ds 1 + i\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {2 z}\) | \(=\) | \(\ds \dfrac {1 + i} {1 - i}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \dfrac 1 2 \ln \dfrac {1 + i} {1 - i}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \ln \dfrac {\paren {1 + i}^2 } {\paren {1 - i} \paren {1 + i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \ln \dfrac {2 i} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \ln i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren {\paren {4 k + 1} \dfrac {\pi i} 2}\) | Natural Logarithm of $i$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {4 k + 1} \pi i} 4\) | for all $k \in \Z$ |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4$. Elementary Functions of a Complex Variable: Exercise $9 \ \text{(ii)}$