Hyperbolic Tangent of Complex Number/Formulation 4
Jump to navigation
Jump to search
Theorem
Let $a$ and $b$ be real numbers.
Let $i$ be the imaginary unit.
Then:
- $\map \tanh {a + b i} = \dfrac {\sinh 2 a + i \sin 2 b} {\cosh 2 a + \cos 2 b}$
where:
- $\tanh$ denotes the hyperbolic tangent function
- $\sin$ denotes the real sine function
- $\cos$ denotes the real cosine function
- $\sinh$ denotes the hyperbolic sine function
- $\cosh$ denotes the hyperbolic cosine function.
Proof
\(\ds \map \tanh {a + b i}\) | \(=\) | \(\ds \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}\) | Hyperbolic Tangent of Complex Number: Formulation 1 | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {\sinh a \cos b + i \cosh a \sin b} \paren {\cosh a \cos b - i \sinh a \sin b} } {\paren {\cosh a \cos b + i \sinh a \sin b} \paren {\cosh a \cos b - i \sinh a \sin b} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh a \cosh a \cos^2 b + i \cosh^2 a \cos b \sin b - i \sinh^2 a \cos b \sin b + \sinh a \cosh a \sin^2 b} {\cosh^2 a \cos^2 b + \sinh^2 a \sin^2 b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh a \cosh a \paren {\cos^2 b + \sin^2 b} + i \paren {\cosh^2 a - \sinh^2 a} \cos b \sin b} {\cosh^2 a \cos^2 b + \sinh^2 a \sin^2 b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh a \cosh a + i \paren {\cosh^2 a - \sinh^2 a} \cos b \sin b} {\cosh^2 a \cos^2 b + \sinh^2 a \sin^2 b}\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh a \cosh a + i \cos b \sin b} {\cosh^2 a \cos^2 b + \sinh^2 a \sin^2 b}\) | Difference of Squares of Hyperbolic Cosine and Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh 2 a + i \sin 2 b} {2 \paren {\cosh^2 a \cos^2 b + \sinh^2 a \sin^2 b} }\) | Double Angle Formula for Hyperbolic Sine, Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh 2 a + i \sin 2 b} {\cosh^2 a \paren {1 + \cos 2 b} + \sinh^2 a \paren {1 - \cos 2 b} }\) | Double Angle Formula for Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh 2 a + i \sin 2 b} {\cosh^2 a + \cosh^2 a \cos 2 b + \sinh^2 a - \sinh^2 a \cos 2 b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh 2 a + i \sin 2 b} {\cosh 2 a + \paren {\cosh^2 a - \sinh^2 a} \cos 2 b}\) | Double Angle Formula for Hyperbolic Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh 2 a + i \sin 2 b} {\cosh 2 a + \cos 2 b}\) | Difference of Squares of Hyperbolic Cosine and Sine |
$\blacksquare$
Also see
- Hyperbolic Sine of Complex Number
- Hyperbolic Cosine of Complex Number
- Hyperbolic Cosecant of Complex Number
- Hyperbolic Secant of Complex Number
- Hyperbolic Cotangent of Complex Number
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4$. Elementary Functions of a Complex Variable: Exercise $9 \ \text{(i)}$