Inverse Laplace Transform of Function of Root by Reciprocal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: \R \to \R$ be a real function.

Then:

$\invlaptrans {\dfrac {\map F {\sqrt s} } s} = \dfrac 1 {\sqrt {\pi t} } \ds \int _0^\infty e^{-{u^2} / 4 t} \map f u \rd u$

where $\invlaptrans {\map F {\sqrt s} }$ denotes the inverse Laplace transform of $\map F {\sqrt s}$.


Proof




Sources