Laplace Transform of Periodic Function
Jump to navigation
Jump to search
Theorem
Let $f: \R \to \R$ be a real function.
Let $f$ be periodic, that is:
- $\exists T \in \R_{\ne 0}: \forall x \in \R: \map f x = \map f {x + T}$
Then:
- $\laptrans {\map f t} = \dfrac 1 {1 - e^{-s T} } \ds \int_0^T e^{-s t} \map f t \rd t$
where $\laptrans {\map f t}$ denotes the Laplace transform.
Proof 1
\(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^{\infty} e^{-s t} \map f t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} \int_{k T}^{\paren {k + 1} T} e^{-s t} \map f t \rd t\) | Sum of Integrals on Adjacent Intervals for Integrable Functions: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} \int_0^T e^{-s \paren {t + k T} } \map f {t + k T} \rd t\) | Change of Limits of Integration | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} \int_0^T e^{-s \paren {t + k T} } \map f t \rd t\) | General Periodicity Property | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} \int_0^T e^{-s t - s k T} \map f t \rd t\) | Real Multiplication Distributes over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} \int_0^T e^{-s t} e^{- s k T} \map f t \rd t\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{\infty} e^{- s k T} \int_0^T e^{-s t} \map f t \rd t\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_0^T e^{-s t} \map f t \rd t} \sum_{k \mathop = 0}^{\infty} e^{- s k T}\) | Scaling of Summations | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_0^T e^{-s t} \map f t \rd t} \sum_{k \mathop = 0}^{\infty} \paren {e^{- s T} }^k\) | Power of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int_0^T e^{-s t} \map f t \rd t} \paren {\frac 1 {1 - e^{-s T} } }\) | Sum of Infinite Geometric Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1 - e^{-s T} } \int_0^T e^{-s t} \map f t \rd t\) | Real Multiplication is Commutative |
$\blacksquare$
Proof 2
\(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^{\infty} e^{-s t} \map f t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_T^{\infty} e^{-s t} \map f t \rd t\) | Sum of Integrals on Adjacent Intervals for Integrable Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_0^{\infty} e^{-s \paren {t + T} } \map f {t + T} \rd t\) | Change of Limits of Integration | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_0^{\infty} e^{-s \paren {t + T} } \map f t \rd t\) | Definition of Real Periodic Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_0^{\infty} e^{-s t - s T} \map f t \rd t\) | Real Multiplication Distributes over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_0^{\infty} e^{-s t} e^{-s T} \map f t \rd t\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + e^{-s T} \int_0^{\infty} e^{-s t} \map f t \rd t\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + e^{-s T} \laptrans {\map f t}\) | Definition of Laplace Transform | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 - e^{-s T} } \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \frac 1 {1 - e^{-s T} } \int_0^T e^{-s t} \map f t \rd t\) |
$\blacksquare$
Proof 3
\(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^{\infty} e^{-s t} \map f t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_T^{2 T} e^{-s t} \map f t \rd t + \int_{2 T}^{3 T} e^{-s t} \map f t \rd t + \dotsb\) | Sum of Integrals on Adjacent Intervals for Integrable Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s u} \map f u \rd t + \int_T^{2 T} e^{-s \paren {u + T} } \map f {u + T} \rd u + \int_{2 T}^{3 T} e^{-s \paren {u + 2 T} } \map f {u + 2 T} \rd u + \dotsb\) | Integration by Substitution: $t = u$, $t = u + T$, $t = u + 2 T$, $\ldots$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s u} \map f u \rd t + e^{-s T} \int_0^T e^{-s u} \map f u \rd u + e^{-2 s T} \int_0^T e^{-s u} \map f u \rd u + \dotsb\) | Second Translation Property of Laplace Transforms, and adjusting limits of integration | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + e^{-s T} + e^{-2 s T} + \dotsb} \int_0^T e^{-s u} \map f u \rd u\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1 - e^{-s T} } \int_0^T e^{-s t} \map f t \rd t\) | Sum of Infinite Geometric Sequence |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Important Properties of Laplace Transforms: $9$. Periodic functions: Theorem $1 \text{-} 14$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text A$: Table of General Properties of Laplace Transforms: $15.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of General Properties of Laplace Transforms: $32.17$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of General Properties of Laplace Transforms: $33.17$