Inverse of Transpose of Matrix is Transpose of Inverse
Jump to navigation
Jump to search
Theorem
Let $\mathbf A$ be a matrix over a field.
Let $\mathbf A^\intercal$ denote the transpose of $\mathbf A$.
Let $\mathbf A$ be an nonsingular matrix.
Then $\mathbf A^\intercal$ is also nonsingular and:
- $\paren {\mathbf A^\intercal}^{-1} = \paren {\mathbf A^{-1} }^\intercal$
where $\mathbf A^{-1}$ denotes the inverse of $\mathbf A$.
Proof
We have:
\(\ds \paren {\mathbf A^{-1} }^\intercal \mathbf A^\intercal\) | \(=\) | \(\ds \paren {\mathbf A \mathbf A^{-1} }^\intercal\) | Transpose of Matrix Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf I^\intercal\) | Definition of Inverse Matrix: $\mathbf I$ denotes Unit Matrix | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf I\) | Definition of Unit Matrix |
Hence $\paren {\mathbf A^{-1} }^\intercal$ is an inverse of $\mathbf A^\intercal$.
From Inverse of Square Matrix over Field is Unique:
- $\paren {\mathbf A^{-1} }^\intercal = \paren {\mathbf A^\intercal}^{-1}$
$\blacksquare$
Sources
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.4$ The transpose of a matrix: Proposition $1.3 \ \text {(b)}$