Laplace Transform of Integral
Jump to navigation
Jump to search
Theorem
Let $f: \R \to \R$ or $\R \to \C$ be a function.
Let $\laptrans f = F$ denote the Laplace transform of $f$.
Then:
- $\ds \laptrans {\int_0^t \map f u \rd u} = \dfrac {\map F s} s$
wherever $\laptrans f$ exists.
Proof
Let $\map g t = \ds \int_0^t \map f u \rd u$.
Then:
- $\map {g'} t = \map f t$
and:
- $\map g 0 = 0$
Thus:
\(\ds \laptrans {\map {g'} t}\) | \(=\) | \(\ds s \laptrans {\map g t} - \map g 0\) | Laplace Transform of Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds s \laptrans {\map g t}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map F s\) | as $\map F s = \laptrans {\map f t}$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \laptrans {\map g t}\) | \(=\) | \(\ds \dfrac {\map F s} s\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \laptrans {\int_0^t \map f u \rd u}\) | \(=\) | \(\ds \dfrac {\map F s} s\) |
$\blacksquare$
Examples
Example $1$
- $\ds \laptrans {\int_0^1 \sin 2 u \rd u} = \dfrac 2 {s \paren {s^2 + 4} }$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Important Properties of Laplace Transforms: $6$. Laplace transform of integrals: Theorem $1 \text{-} 11$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Solved Problems: Laplace Transform of Integrals: $17$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text A$: Table of General Properties of Laplace Transforms: $12.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of General Properties of Laplace Transforms: $32.13$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of General Properties of Laplace Transforms: $33.13$