Law of Cosines/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle whose sides $a, b, c$ are such that $a$ is opposite $A$, $b$ is opposite $B$ and $c$ is opposite $C$.

Then:

$c^2 = a^2 + b^2 - 2 a b \cos C$


Proof

Lemma: Right Triangle

Let $\triangle ABC$ be a right triangle such that $\angle A$ is right.

CosineRule-Proof3-right.png
\(\ds a^2\) \(=\) \(\ds b^2 + c^2\) Pythagoras's Theorem
\(\ds c^2\) \(=\) \(\ds a^2 - b^2\) adding $-b^2$ to both sides and rearranging
\(\ds \) \(=\) \(\ds a^2 - 2 b^2 + b^2\) adding $0 = b^2 - b^2$ to the right hand side
\(\ds \) \(=\) \(\ds a^2 - 2 a b \left({\frac b a}\right) + b^2\) multiplying $2 b^2$ by $\dfrac a a$
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) Definition of Cosine: $\cos C = \dfrac b a$

$\Box$


Acute Triangle

Let $\triangle ABC$ be an acute triangle.

CosineRule-Proof3-acute.png

Let $BD$ be dropped perpendicular to $AC$.

Let:

\(\ds h\) \(=\) \(\ds BD\)
\(\ds e\) \(=\) \(\ds CD\)
\(\ds f\) \(=\) \(\ds AD\)


We have that $\triangle CDB$ and $\triangle ADB$ are right triangles.

Hence:

\(\text {(1)}: \quad\) \(\ds c^2\) \(=\) \(\ds h^2 + f^2\) Pythagoras's Theorem
\(\text {(2)}: \quad\) \(\ds a^2\) \(=\) \(\ds h^2 + e^2\) Pythagoras's Theorem
\(\text {(3)}: \quad\) \(\ds b^2\) \(=\) \(\ds \paren {e + f}^2\)
\(\ds \) \(=\) \(\ds e^2 + f^2 + 2ef\)
\(\text {(4)}: \quad\) \(\ds e\) \(=\) \(\ds a \cos C\) Definition of Cosine of Angle


Then:

\(\ds c^2\) \(=\) \(\ds h^2 + f^2\) from $(1)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2\) from $(2)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2 + 2 e^2 - 2 e^2 + 2 e f - 2 e f\) adding and subtracting $2 e^2$ and $2 e f$
\(\ds \) \(=\) \(\ds a^2 + \paren {e^2 + f^2 + 2 e f} - 2 e \paren {e + f}\) rearanging
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) using $(3)$ to substitute for $b^2$ and $b$, and $(4)$ to substitute $e$ for $a \cos C$

$\Box$


Obtuse Triangle

Let $\triangle ABC$ be an obtuse triangle.

CosineRule-Proof3-obtuse.png

Let $AC$ be extended and $BD$ be dropped perpendicular to $AC$.

Let:

\(\ds h\) \(=\) \(\ds BD\)
\(\ds e\) \(=\) \(\ds CD\)
\(\ds f\) \(=\) \(\ds AD\)


We have that $\triangle CDB$ and $\triangle ADB$ are right triangles.

Hence:

\(\text {(1)}: \quad\) \(\ds c^2\) \(=\) \(\ds h^2 + f^2\) Pythagoras's Theorem
\(\text {(2)}: \quad\) \(\ds a^2\) \(=\) \(\ds h^2 + e^2\) Pythagoras's Theorem
\(\text {(3)}: \quad\) \(\ds e^2\) \(=\) \(\ds \paren {b + f}^2\)
\(\ds \) \(=\) \(\ds b^2 + f^2 + 2 b f\)
\(\text {(4)}: \quad\) \(\ds e\) \(=\) \(\ds a \cos C\) Definition of Cosine of Angle


Then:

\(\ds c^2\) \(=\) \(\ds h^2 + f^2\) from $(1)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2\) from $(2)$
\(\ds \) \(=\) \(\ds a^2 - b^2 - f^2 - 2 b f + f^2\) substituting for $e^2$ from $(3)$
\(\ds \) \(=\) \(\ds a^2 - b^2 - 2 b f + 2 b^2 - 2 b^2\) simplifying and adding and subtracting $2 b^2$
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 b \paren {b + f}\) rearranging
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) using $(4)$ to substitute $b + f = e$ with $a \cos C$

$\blacksquare$


Also known as

The Law of Cosines is also known as the Cosine Rule or Cosine Law.

It is known in France as Théorème d'Al-Kashi (Al-Kashi's Theorem) after Jamshīd al-Kāshī, who is believed to have first discovered it.


Sources