# Legendre's Condition/Lemma 1

This article needs to be linked to other articles.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

## Lemma

Let $y = \map y x$ be a real function, such that:

- $\map y a = A$
- $\map y b = B$

Let $J \sqbrk y$ be a functional, such that:

- $\ds J \sqbrk y = \int_a^b \map F {x, y, y'} \rd x$

where:

- $F \in C^2 \closedint a b$

with respect to all its variables.

Then:

- $\ds \delta^2 J \sqbrk {y; h} = \int_a^b \paren {\map P {x, \map y x} h'^2 + \map Q {x, \map y x} h^2} \rd x$

where:

\(\ds \map P {x, \map y x}\) | \(=\) | \(\ds \frac 1 2 F_{y'y'}\) | ||||||||||||

\(\ds \map Q {x, \map y x}\) | \(=\) | \(\ds \frac 1 2 \paren {F_{yy} - \frac \d {\d x} F_{yy} }\) |

## Proof

The minimising function $y$ has fixed end-points.

Therefore, consider an increment of a functional with $h$ such that:

- $h \in C^1 \closedint a b: \paren {\map h a = 0} \land \paren {\map h b = 0}$

Then:

\(\ds \Delta J \sqbrk {y; h}\) | \(=\) | \(\ds J \sqbrk {y + h} - J \sqbrk y\) | Definition of Increment of Functional | |||||||||||

\(\ds \) | \(=\) | \(\ds \int_a^b \paren {\map F {x, y + h, y' + h'} - \map F {x, y, y'} } \rd x\) | form of $J$ | |||||||||||

\(\ds \) | \(=\) | \(\ds \int_a^b \paren {F + \paren {F_y h + F_{y'} h'} + \frac 1 2 \paren {\overline F_{yy} h^2 + \overline F_{yy'} h h' + \overline F_{y'y'} h'^2} - F} \rd x\) | Taylor's Theorem | |||||||||||

\(\ds \) | \(=\) | \(\ds \int_a^b \paren {F_y h + F_{y'} h'} \rd x + \frac 1 2 \int_a^b \paren {\overline F_{yy} h^2 + \overline F_{yy'} h h' + \overline F_{y'y'} h'^2} \rd x\) | cancel $F$ |

where omitted variables are $\paren {x, y, y'}$, and the overbar indicates derivatives being taken along some intermediate curves:

\(\ds \overline {\map {F_{yy} } {x,y,y'} }\) | \(=\) | \(\ds \map {F_{yy} } {x, y + \theta h, y' + \theta h'}\) | ||||||||||||

\(\ds \overline {\map {F_{yy'} } {x,y,y'} }\) | \(=\) | \(\ds \map {F_{yy'} } {x, y + \theta h, y' + \theta h'}\) | ||||||||||||

\(\ds \overline {\map {F_{y'y'} } {x,y,y'} }\) | \(=\) | \(\ds \map {F_{y'y'} } {x, y + \theta h, y' + \theta h'}\) |

with $0 < \theta < 1$.

If $\overline F_{yy}$, $\overline F_{yy'}$, $\overline F_{y'y'} $ are to be replaced by $F_{yy}$, $F_{yy}$, $F_{y'y'}$ evaluated at the point $\tuple {x, \map y x, \map {y'} x}$, then:

- $\ds \Delta J \sqbrk {y; h} = \int_a^b \paren {\map {F_y} {x, y, y'} h + \map {F_{y'} } {x, y, y'} h'} \rd x + \frac 1 2 \int_a^b \paren {\map {F_{yy} } {x, y, y'} h^2 + 2 \map {F_{yy'} } {x, y, y'} h h'+ \map {F_{y'y'} } {x, y, y'} h'^2} \rd x + \epsilon$

where:

- $\ds \epsilon = \int_a^b \paren {\epsilon_1 h^2 + \epsilon_2 h h' + \epsilon_3 h'^2}$

By continuity of $F_{yy}$, $F_{yy}$, $F_{y'y'}$:

- $\size h_1 \to 0 \implies \epsilon_1, \epsilon_2, \epsilon_3 \to 0$

This article, or a section of it, needs explaining.In particular: What does $\size h_1$ mean?You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

Thus, $\epsilon$ is an infinitesimal of the order higher than 2 with respect to $\size h$.

This article is incomplete.In particular: Expand on steps including $ \epsilon $You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by expanding it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Stub}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

The first and second term on the right hand side of $\Delta J \sqbrk {y; h}$ are $\delta J \sqbrk {y; h}$ and $\delta^2 J \sqbrk {y; h}$ respectively.

Integrate the second term of $\delta^2 J \sqbrk {y; h}$ by parts:

\(\ds \int_a^b 2 F_{yy'} h h' \rd x\) | \(=\) | \(\ds \int_a^b 2 F_{yy'} h \rd h\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \int_a^b F_{yy'} \rd h^2\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \bigintlimits {F_{yy'} h^2} {x \mathop = a} {x \mathop = b} - \int_a^b \map {\frac \d {\d x} } {F_{yy'} } h^2 \rd x\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds -\int_a^b \map {\frac \d {\d x} } {F_{yy'} } h^2 \rd x\) |

This article, or a section of it, needs explaining.In particular: Why does $\bigintlimits {F_{yy'} h^2} {x \mathop = a} {x \mathop = b}$ vanish?You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

Therefore:

- $\ds \delta^2 J \sqbrk {y; h} = \int_a^b \paren {\frac 1 2 F_{y'y'} h'^2 + \frac 1 2 \paren {F_{yy} - \frac \d {\d x} F_{yy'} } h^2} \rd x$

$\Box$

This article, or a section of it, needs explaining.In particular: Review use of square brackets. If they are being used purely for parenthesis, better to replace with round ones, as square ones have conventional meanings, so use of them for parenthesis may confuse.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

## Mistake

1963: I.M. Gelfand and S.V. Fomin: *Calculus of Variations*: $\S 5.25$: The Formula for the Second Variation. Legendre's Condition p. 102

states that

- $P = \dfrac 1 2 F_{y'y'} \quad Q = \dfrac 1 2 \paren {F_{yy'} - \dfrac \d {\d x} F_{yy'} }$

This is a mistake, since the second variation should contain both pure and mixed partial derivatives of the order 2.

However, $F_{yy} $ is missing and could not have been lost during derivation of the proof.

It should be:

- $Q = \dfrac 1 2 \paren {F_{yy} - \dfrac \d {\d x} F_{yy'} }$

## Sources

1963: I.M. Gelfand and S.V. Fomin: *Calculus of Variations* ... (previous) ... (next): $\S 5.25$: The Formula for the Second Variation. Legendre's Condition