Matrix is Nonsingular iff Determinant has Multiplicative Inverse
Jump to navigation
Jump to search
Theorem
Let $R$ be a commutative ring with unity.
Let $\mathbf A \in R^{n \times n}$ be a square matrix of order $n$.
Then $\mathbf A$ is nonsingular if and only if its determinant is a invertible in $R$.
If $R$ is one of the standard number fields $\Q$, $\R$ or $\C$, this translates into:
- $\mathbf A$ is nonsingular if and only if its determinant is non-zero.
Proof
Necessary Condition
Let $\mathbf A$ be nonsingular with $\mathbf B = \mathbf A^{-1}$.
Let $1_R$ denote the unity of $R$.
Let $\mathbf I_n$ denote the unit matrix of order $n$.
Then:
\(\ds 1_R\) | \(=\) | \(\ds \map \det {\mathbf I_n}\) | Determinant of Unit Matrix | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \det {\mathbf A \mathbf B}\) | Definition of Inverse Matrix | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \det {\mathbf A} \, \map \det {\mathbf B}\) | Determinant of Matrix Product |
This shows that:
- $\map \det {\mathbf B} = \dfrac 1 {\map \det {\mathbf A} }$
$\Box$
Sufficient Condition
Let $\map \det {\mathbf A}$ be invertible in $R$.
From Matrix Product with Adjugate Matrix:
\(\ds \mathbf A \cdot \adj {\mathbf A}\) | \(=\) | \(\ds \map \det {\mathbf A} \cdot \mathbf I_n\) | ||||||||||||
\(\ds \adj {\mathbf A} \cdot \mathbf A\) | \(=\) | \(\ds \map \det {\mathbf A} \cdot \mathbf I_n\) |
Thus:
\(\ds \mathbf A \cdot \paren {\map \det {\mathbf A}^{-1} \cdot \adj {\mathbf A} }\) | \(=\) | \(\ds \mathbf I_n\) | ||||||||||||
\(\ds \paren {\map \det {\mathbf A}^{-1} \cdot \adj {\mathbf A} } \cdot \mathbf A\) | \(=\) | \(\ds \mathbf I_n\) |
Thus $\mathbf A$ is nonsingular, and:
- $\mathbf A^{-1} = \map \det {\mathbf A}^{-1} \cdot \adj {\mathbf A}$
$\blacksquare$
Also see
- Inverse of Matrix is Scalar Product of Adjugate by Reciprocal of Determinant: $\mathbf A^{-1} = \dfrac 1 {\map \det {\mathbf A} } \cdot \adj {\mathbf A}$
Sources
- 1980: A.J.M. Spencer: Continuum Mechanics ... (previous) ... (next): $2.1$: Matrices
- 1994: Robert Messer: Linear Algebra: Gateway to Mathematics: $\S 7.4$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): $\text{A}.2$: Linear algebra and determinants: Theorem $\text{A}.9 \ (2)$
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.6$ Determinant and trace