Matroid Unique Circuit Property/Proof 2
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $M = \struct {S, \mathscr I}$ be a matroid.
Let $X \subseteq S$ be an independent subset of $M$.
Let $x \in S$ such that:
- $X \cup \set x$ is a dependent subset of $M$.
Then there exists a unique circuit $C$ such that:
- $x \in C \subseteq X \cup \set x$
Proof
From Dependent Subset Contains a Circuit:
- there exists a circuit $C$ such that $C \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C$
Aiming for a contradiction, suppose $C'$ is circuit of $M$ such that:
- $C' \ne C$
- $C' \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C'$
By the definition of minimal dependent subset:
- $C \nsubseteq C'$
By the definition of a subset:
- $\exists y \in C \setminus C'$
By the definition of minimal dependent subset:
- $C \setminus \set y \in \mathscr I$
From Independent Subset is Contained in Maximal Independent Subset:
- $\exists Y \in \mathscr I : C \setminus \set y \subseteq Y \subseteq X \cup \set x : Y$ is a maximal independent subset of $X \cup \set x$
By assumption:
- $X$ is a maximal independent subset of $X \cup \set x$
By matroid axiom $(\text I 6)$:
- $\card Y = \card X$
As $x \in C'$ and $y \notin C'$ then:
- $x \ne y$
Hence:
- $x \in C \setminus \set y$
By matroid axiom $(\text I 2)$:
- $C \setminus \set y \cup \set y = C \nsubseteq Y$
Hence:
- $y \notin Y$
Hence:
- $Y \subseteq \paren {X \cup \set x} \setminus \set y$
From Cardinality of Subset of Finite Set:
- $\card Y \le \card {\paren {X \cup \set x} \setminus \set y}$
We have:
\(\ds \card {\paren {X \cup \set x} \setminus \set y}\) | \(=\) | \(\ds \card {\paren {X \cup \set x} } - \card {\set y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X + \card {\set x} - \card {\set y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X + 1 - 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card Y\) |
From Cardinality of Proper Subset of Finite Set:
- $Y = \paren {X \cup \set x} \setminus \set y$
Hence:
- $\paren {X \cup \set x} \setminus \set y \in \mathscr I$
As $y \notin C'$ and $C' \subseteq X \cup \set x$ then:
- $C' \subseteq \paren {X \cup \set x} \setminus \set y$
From Superset of Dependent Set is Dependent:
- $\paren {X \cup \set x} \setminus \set y \notin \mathscr I$
This contradicts the previous statement that
- $\paren {X \cup \set x} \setminus \set y \in \mathscr I$
It follows that $C$ is the unique circuit such that:
- $C \subseteq X \cup \set x$
$\blacksquare$