Matroid Unique Circuit Property
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $M = \struct {S, \mathscr I}$ be a matroid.
Let $X \subseteq S$ be an independent subset of $M$.
Let $x \in S$ such that:
- $X \cup \set x$ is a dependent subset of $M$.
Then there exists a unique circuit $C$ such that:
- $x \in C \subseteq X \cup \set x$
Corollary
Let $B$ be a base of $M$.
Let $x \in S \setminus B$.
Then there exists a unique circuit $C$ such that:
- $x \in C \subseteq B \cup \set x$
That is, $C$ is the fundamental circuit of $x$ in $B$.
Proof 1
From Dependent Subset Contains a Circuit:
- there exists a circuit $C$ such that $C \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C$
Aiming for a contradiction, suppose $C'$ is circuit of $M$ such that:
- $C' \ne C$
- $C' \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C'$
Hence:
- $x \in C \cap C'$
From Equivalence of Definitions of Matroid Circuit Axioms, the set $\mathscr C$ of all circuits satisfies the matroid circuit axiom $(\text C 3)$:
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Hence there exists a circuit $C_3$ of $M$:
- $C_3 \subseteq \paren{C \cup C'} \setminus \set x \subseteq X$
This contradicts the independence of $X$.
The result follows.
$\blacksquare$
Proof 2
From Dependent Subset Contains a Circuit:
- there exists a circuit $C$ such that $C \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C$
Aiming for a contradiction, suppose $C'$ is circuit of $M$ such that:
- $C' \ne C$
- $C' \subseteq X \cup \set x$
From Dependent Subset of Independent Set Union Singleton Contains Singleton:
- $x \in C'$
By the definition of minimal dependent subset:
- $C \nsubseteq C'$
By the definition of a subset:
- $\exists y \in C \setminus C'$
By the definition of minimal dependent subset:
- $C \setminus \set y \in \mathscr I$
From Independent Subset is Contained in Maximal Independent Subset:
- $\exists Y \in \mathscr I : C \setminus \set y \subseteq Y \subseteq X \cup \set x : Y$ is a maximal independent subset of $X \cup \set x$
By assumption:
- $X$ is a maximal independent subset of $X \cup \set x$
By matroid axiom $(\text I 3''')$:
- $\card Y = \card X$
As $x \in C'$ and $y \notin C'$ then:
- $x \ne y$
Hence:
- $x \in C \setminus \set y$
By matroid axiom $(\text I 2)$:
- $C \setminus \set y \cup \set y = C \nsubseteq Y$
Hence:
- $y \notin Y$
Hence:
- $Y \subseteq \paren {X \cup \set x} \setminus \set y$
From Cardinality of Subset of Finite Set:
- $\card Y \le \card {\paren {X \cup \set x} \setminus \set y}$
We have:
\(\ds \card {\paren {X \cup \set x} \setminus \set y}\) | \(=\) | \(\ds \card {\paren {X \cup \set x} } - \card {\set y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X + \card {\set x} - \card {\set y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X + 1 - 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card X\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \card Y\) |
From Cardinality of Proper Subset of Finite Set:
- $Y = \paren {X \cup \set x} \setminus \set y$
Hence:
- $\paren {X \cup \set x} \setminus \set y \in \mathscr I$
As $y \notin C'$ and $C' \subseteq X \cup \set x$ then:
- $C' \subseteq \paren {X \cup \set x} \setminus \set y$
From Superset of Dependent Set is Dependent:
- $\paren {X \cup \set x} \setminus \set y \notin \mathscr I$
This contradicts the previous statement that
- $\paren {X \cup \set x} \setminus \set y \in \mathscr I$
It follows that $C$ is the unique circuit such that:
- $C \subseteq X \cup \set x$
$\blacksquare$