Modulo Multiplication/Cayley Table/Modulo 4

From ProofWiki
Jump to navigation Jump to search

Cayley Table for Modulo Multiplication

The multiplicative monoid of integers modulo $m$ can be described by showing its Cayley table.


This one is for modulo $4$:

$\begin{array} {r|rrrrr} \struct {\Z_4, \times_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 \\ \eqclass 1 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 2 4 & \eqclass 0 4 & \eqclass 2 4 & \eqclass 0 4 & \eqclass 2 4 \\ \eqclass 3 4 & \eqclass 0 4 & \eqclass 3 4 & \eqclass 2 4 & \eqclass 1 4 \\ \end{array}$

which can also be presented:

$\begin{array} {r|rrrrr} \times_4 & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 3 & 2 & 1 \\ \end{array}$


Sources