Definition:Modulo Multiplication
Definition
Definition 1
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {\eqclass 0 m, \eqclass 1 m, \ldots, \eqclass {m - 1} m}$
where $\eqclass x m$ is the residue class of $x$ modulo $m$.
The operation of multiplication modulo $m$ is defined on $\Z_m$ as:
- $\eqclass a m \times_m \eqclass b m = \eqclass {a b} m$
Definition 2
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {0, 1, \ldots, m - 1}$
The operation of multiplication modulo $m$ is defined on $\Z_m$ as:
Definition 3
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {0, 1, \ldots, m - 1}$
The operation of multiplication modulo $m$ is defined on $\Z_m$ as:
- $a \times_m b := a b - k m$
where $k$ is the largest integer such that $k m \le a b$.
Also denoted as
Although the operation of multiplication modulo $m$ is denoted by the symbol $\times_m$, if there is no danger of confusion, the conventional multiplication symbols $\times, \cdot$ etc. are often used instead.
The notation for multiplication of two integers modulo $m$ is not usually $\eqclass a m \times_m \eqclass b m$.
What is more normally seen is $a b \pmod m$.
Cayley Table
Modulo 3
- $\begin {array} {r|rrr} \struct {\Z_3, \times_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 & \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 0 3 & \eqclass 0 3\\\eqclass 1 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 2 3 & \eqclass 0 3 & \eqclass 2 3 & \eqclass 1 3 \\ \end {array}$
which can also be presented:
- $\begin {array} {r|rrrrr} \times_3 & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 \end {array}$
Modulo 4
- $\begin {array} {r|rrrrr} \struct {\Z_4, \times_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 & \eqclass 0 4 \\ \eqclass 1 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 2 4 & \eqclass 0 4 & \eqclass 2 4 & \eqclass 0 4 & \eqclass 2 4 \\ \eqclass 3 4 & \eqclass 0 4 & \eqclass 3 4 & \eqclass 2 4 & \eqclass 1 4 \\ \end {array}$
which can also be presented:
- $\begin {array} {r|rrrrr} \times_4 & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 3 & 2 & 1 \\ \end {array}$
Modulo 5
- $\begin {array} {r|rrrrr} \struct {\Z_5, \times_5} & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \hline \eqclass 0 5 & \eqclass 0 5 & \eqclass 0 5 & \eqclass 0 5 & \eqclass 0 5 & \eqclass 0 5 \\ \eqclass 1 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \eqclass 2 5 & \eqclass 0 5 & \eqclass 2 5 & \eqclass 4 5 & \eqclass 1 5 & \eqclass 3 5 \\ \eqclass 3 5 & \eqclass 0 5 & \eqclass 3 5 & \eqclass 1 5 & \eqclass 4 5 & \eqclass 2 5 \\ \eqclass 4 5 & \eqclass 0 5 & \eqclass 4 5 & \eqclass 3 5 & \eqclass 2 5 & \eqclass 1 5 \\ \end {array}$
which can also be presented:
- $\begin {array} {r|rrrrr} \times_5 & 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 \\ 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 0 & 3 & 1 & 4 & 2 \\ 4 & 0 & 4 & 3 & 2 & 1 \\ \end {array}$
Modulo 6
$\quad \begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \end{array}$
Examples
Example: $8 \times 27 \pmod {10}$
\(\ds \paren {8 \times 27} \pmod {10}\) | \(=\) | \(\ds \paren {18 \times 7} \pmod {10}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 \pmod {10}\) |
Also see
- Results about modulo multiplication can be found here.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruence modulo $n$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruence modulo $n$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): modulo $n$, addition and multiplication