Nagata-Smirnov Metrization Theorem/Lemma 2
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $T = \struct {S, \tau}$ be a topological space.
Let $\BB = \ds \bigcup_{n \mathop \in \N} \BB_n$ be a $\sigma$-locally finite basis of $T$ where $\BB_n$ is locally finite set of subsets for each $n \in \N$.
Let $I = \set{\tuple{B, n} : B \in \BB, B \in \BB_n}$.
For each $\tuple{B, n} \in I$, let $f_{\tuple{B, n}}:S \to \closedint 0 1$:
- $B = \set{x \in S : \map {f_{\tuple{B, n}}} x \ne 0}$
Let $g_n : S \to \closedint 0 1$ be the mapping defined by:
- $\map {g_n} x$ is the limit of the generalized sum $\ds \sum_{B \in \BB_n} \map {f_{\tuple{B, n}}^2} x$
For all $n \in \N$, let:
- $I_n = \set{\tuple{B, k} \in I : k \ge n}$
Then:
- for all $n \in \N$ and $x \in S$:
- the generalized sum $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2$ converges
and:
- $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2 \le \sum_{m \mathop = n}^\infty \dfrac 1 {2^k}$
Proof
Let $n \in \N$.
Let $x \in S$.
Let $\FF$ denote the set of finite subsets of $I_n$.
Let $F \in \FF$.
Hence:
- $\set{k \in \N : \exists B \in \BB_k : \tuple{B, k} \in F}$ is finite.
Let $\set{n_1, n_2, \ldots, n_m} = \set{k \in \N : \exists B \in \BB_k : \tuple{B, k} \in F}$.
We have:
\(\ds \sum_{\tuple{B, k} \mathop \in F} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{b, k} } } x} {\sqrt {1 + \map {g_k} x} } }^2\) | \(=\) | \(\ds \sum_{\tuple{B, k} \mathop \in F} \sqbrk{\dfrac {\map {f^2_{\tuple{b, k} } } x} {2^n \paren{1 + \map {g_k} x} } }\) | squaring the terms to remove square roots | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^m \sqbrk{\sum_{\tuple{B, n_k} \mathop \in F} \dfrac {\map {f^2_{\tuple{b, n_k} } } x} {2^{n_k} \paren{1 + \map {g_{n_k} } x} } }\) | Summation over Union of Disjoint Finite Index Sets | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^m \sqbrk{ \dfrac 1 {2^{n_k} \paren{1 + \map {g_{n_k} } x} } \ds \sum_{\tuple{B, n_k} \mathop \in F} \map {f^2_{\tuple{b, n_k} } } x}\) | Real Number Axiom $\R \text D$: Distributivity of Multiplication over Addition | |||||||||||
\(\ds \) | \(\le\) | \(\ds \sum_{k \mathop = 1}^m \sqbrk{\dfrac 1 {2^{n_k} \paren{1 + \map {g_{n_k} } x} } \ds \sum_{B \mathop \in \BB_{n_k} } \map {f^2_{\tuple{b, n_k} } } x}\) | Absolutely Convergent Generalized Sum Converges to Supremum | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^m \dfrac {\map {g_{n_k} } x} {2^{n_k} \paren{1 + \map {g_{n_k} } x} }\) | definition of $g_{n_k}$ | |||||||||||
\(\ds \) | \(<\) | \(\ds \sum_{k \mathop = 1}^m \dfrac 1 {2^{n_k} }\) | as $\map {g_{n_k} } x < 1 + \map {g_{n_k} } x$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \sum_{k \mathop = n}^\infty \dfrac 1 {2^k}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) | Sum of Infinite Geometric Sequence |
Since $F$ was arbitrary, it follows that:
- $\forall F \in \FF : \ds \sum_{\tuple{B, k} \mathop \in F} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{b, k} } } x} {\sqrt {1 + \map {g_k} x} } }^2 \le \sum_{k \mathop = n}^\infty \dfrac 1 {2^k}$
From Bounded Generalized Sum is Absolutely Convergent:
- the generalized sum $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2$ converges
and:
- $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2 \le \sum_{k \mathop = n}^\infty \dfrac 1 {2^k}$
$\blacksquare$