Polar Form of Complex Number/Examples/-1 + root 3 i

From ProofWiki
Jump to navigation Jump to search

Example of Polar Form of Complex Number

The complex number $-1 + \sqrt 3 i$ can be expressed as a complex number in polar form as $\polar {2, \dfrac {2 \pi} 3}$.


Proof

\(\ds \cmod {-1 + \sqrt 3 i}\) \(=\) \(\ds \sqrt {\paren {-1}^2 + \paren {\sqrt 3}^2}\) Definition of Complex Modulus
\(\ds \) \(=\) \(\ds \sqrt {1 + 3}\)
\(\ds \) \(=\) \(\ds \sqrt 4\)
\(\ds \) \(=\) \(\ds 2\)


Then:

\(\ds \map \cos {\map \arg {-1 + \sqrt 3 i} }\) \(=\) \(\ds \dfrac {-1} 2\) Definition of Argument of Complex Number
\(\ds \leadsto \ \ \) \(\ds \map \arg {-1 + \sqrt 3 i}\) \(=\) \(\ds \dfrac {2 \pi} 3 \text { or } \dfrac {4 \pi} 3\) Cosine of $120 \degrees$, Cosine of $240 \degrees$


\(\ds \map \sin {\map \arg {-1 + \sqrt 3 i} }\) \(=\) \(\ds \dfrac {\sqrt 3} 2\) Definition of Argument of Complex Number
\(\ds \leadsto \ \ \) \(\ds \map \arg {-1 + \sqrt 3 i}\) \(=\) \(\ds \dfrac \pi 3 \text { or } \dfrac {2 \pi} 3\) Sine of $60 \degrees$, Sine of $120 \degrees$


Hence:

$\map \arg {-1 + \sqrt 3 i} = \dfrac {2 \pi} 3$

and hence the result.

$\blacksquare$


Sources