Power Reduction Formulas
Jump to navigation
Jump to search
Theorem
Square of Sine
- $\sin^2 x = \dfrac {1 - \cos 2 x} 2$
Square of Cosine
- $\cos^2 x = \dfrac {1 + \cos 2 x} 2$
Square of Tangent
- $\tan^2x = \dfrac {1 - \cos2x} {1 + \cos2x}$
Cube of Sine
- $\sin^3 x = \dfrac {3 \sin x - \sin 3 x} 4$
Cube of Cosine
- $\cos^3 x = \dfrac {3 \cos x + \cos 3 x} 4$
Fourth Power of Sine
- $\sin^4 x = \dfrac {3 - 4 \cos 2 x + \cos 4 x} 8$
Fourth Power of Cosine
- $\cos^4 x = \dfrac {3 + 4 \cos 2 x + \cos 4 x} 8$
Fifth Power of Sine
- $\sin^5 x = \dfrac {10 \sin x - 5 \sin 3 x + \sin 5 x} {16}$
Fifth Power of Cosine
- $\cos^5 x = \dfrac {10 \cos x + 5 \cos 3 x + \cos 5 x} {16}$
Sixth Power of Cosine
- $\cos^6 x = \dfrac {10 + 15 \cos 2 x + 6 \cos 4 x + \cos 6 x} {32}$
Seventh Power of Cosine
- $\cos^7 x = \dfrac {35 \cos x + 21 \cos 3 x + 7 \cos 5 x + \cos 7 x} {64}$
where $\sin, \cos$ and $\tan$ denote sine, cosine and tangent respectively.
Square of Hyperbolic Sine
- $\sinh^2 x = \dfrac {\cosh 2 x - 1} 2$
Square of Hyperbolic Cosine
- $\cosh^2 x = \dfrac {\cosh 2 x + 1} 2$
Cube of Hyperbolic Sine
- $\sinh^3 x = \dfrac {\sinh 3 x - 3 \sinh x} 4$
Cube of Hyperbolic Cosine
- $\cosh^3 x = \dfrac {\cosh 3 x + 3 \cosh x} 4$
Fourth Power of Hyperbolic Sine
- $\sinh^4 x = \dfrac {3 - 4 \cosh 2 x + \cosh 4 x} 8$
Fourth Power of Hyperbolic Cosine
- $\cosh^4 x = \dfrac {3 + 4 \cosh 2 x + \cosh 4 x} 8$
where $\sinh$ and $\cosh$ denote hyperbolic sine and hyperbolic cosine respectively.
Comment
The identities for $\sin^m x$ and $\cos^n x$ can be useful for integrating expressions of the form:
- $\ds \int \sin^m x \ \cos^n x \rd x$