Power Reduction Formulas/Hyperbolic Sine Squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh^2 x = \dfrac {\cosh 2 x - 1} 2$

where $\sinh$ and $\cosh$ denote hyperbolic sine and hyperbolic cosine respectively.


Proof 1

\(\ds 2 \sinh^2 x + 1\) \(=\) \(\ds \cosh 2 x\) Double Angle Formula for Hyperbolic Cosine: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds \sinh^2 x\) \(=\) \(\ds \frac {\cosh 2 x - 1} 2\) solving for $\sinh^2 x$

$\blacksquare$


Proof 2

\(\ds \sinh^2 x\) \(=\) \(\ds \paren {\frac {e^x - e^{-x} } 2}^2\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {e^{2 x} + e^{-2 x} - 2}\) multiplying out
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\dfrac {e^{2 x} + e^{-2 x} } 2 - 1}\) rearranging
\(\ds \) \(=\) \(\ds \frac {\cosh 2 x - 1} 2\) Definition of Hyperbolic Cosine

$\blacksquare$


Also see


Sources