Power Series Expansion for Complementary Error Function

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \map \erfc x\) \(=\) \(\ds 1 - \frac 2 {\sqrt \pi} \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n + 1} } {n! \paren {2 n + 1} }\)
\(\ds \) \(=\) \(\ds 1 - \frac 2 {\sqrt \pi} \paren {x - \frac {x^3} {3 \times 1!} + \frac {x^5} {5 \times 2!} - \frac {x^7} {7 \times 3!} + \frac {x^9} {9 \times 4!} - \cdots}\)


where:

$\erfc$ is the complementary error function
$x$ is a real number.


Proof

\(\ds \map \erfc x\) \(=\) \(\ds 1 - \map \erf x\) Definition of Complementary Error Function
\(\ds \) \(=\) \(\ds 1 - \frac 2 {\sqrt \pi} \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n + 1} } {n! \paren {2 n + 1} }\) Power Series Expansion for Error Function

$\blacksquare$


Sources