Power Series Expansion for Cosine Function
Jump to navigation
Jump to search
Theorem
The cosine function has the power series expansion:
\(\ds \cos x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac {x^2} {2!} + \frac {x^4} {4!} - \frac {x^6} {6!} + \cdots\) |
valid for all $x \in \R$.
Proof
From Derivative of Cosine Function:
- $\dfrac \d {\d x} \cos x = -\sin x$
From Derivative of Sine Function:
- $\dfrac \d {\d x} \sin x = \cos x$
Hence:
\(\ds \dfrac {\d^2} {\d x^2} \cos x\) | \(=\) | \(\ds -\cos x\) | ||||||||||||
\(\ds \dfrac {\d^3} {\d x^3} \cos x\) | \(=\) | \(\ds \sin x\) | ||||||||||||
\(\ds \dfrac {\d^4} {\d x^4} \cos x\) | \(=\) | \(\ds \cos x\) |
and so for all $m \in \N$:
\(\ds m = 4 k: \ \ \) | \(\ds \dfrac {\d^m} {\d x^m} \cos x\) | \(=\) | \(\ds \cos x\) | |||||||||||
\(\ds m = 4 k + 1: \ \ \) | \(\ds \dfrac {\d^m} {\d x^m} \cos x\) | \(=\) | \(\ds -\sin x\) | |||||||||||
\(\ds m = 4 k + 2: \ \ \) | \(\ds \dfrac {\d^m} {\d x^m} \cos x\) | \(=\) | \(\ds -\cos x\) | |||||||||||
\(\ds m = 4 k + 3: \ \ \) | \(\ds \dfrac {\d^m} {\d x^m} \cos x\) | \(=\) | \(\ds \sin x\) |
where $k \in \Z$.
This leads to the Maclaurin series expansion:
\(\ds \sin x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {\frac {x^{4 k} } {\paren {4 k}!} \map \cos 0 - \frac {x^{4 k + 1} } {\paren {4 k + 1}!} \map \sin 0 - \frac {x^{4 k + 2} } {\paren {4 k + 2}!} \map \cos 0 + \frac {x^{4 k + 3} } {\paren {4 k + 3}!} \map \sin 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {\frac {x^{4 k} } {\paren {4 k}!} - \frac {x^{4 k + 2} } {\paren {4 k + 2}!} }\) | Sine of Zero is Zero, Cosine of Zero is One | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | setting $n = 2 k$ |
From Series of Power over Factorial Converges, it follows that this series is convergent for all $x$.
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Series for Trigonometric Functions: $20.22$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $8$. Taylor Series and Power Series: Appendix: Table $8.2$: Power Series of Important Functions
- 1992: Larry C. Andrews: Special Functions of Mathematics for Engineers (2nd ed.) ... (previous) ... (next): $\S 1.3.2$: Power series: $(1.47)$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): power series
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): power series
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Series for Trigonometric Functions: $22.22.$