Power Series Expansion for Logarithm of Cosine of x
Jump to navigation
Jump to search
Theorem
\(\ds \ln \size {\cos x}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n 2^{2 n - 1} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {x^2} 2 - \frac {x^4} {12} - \frac {x^6} {45} - \frac {17 x^8} {2520} - \cdots\) |
for all $x \in \R$ such that $\size x < \dfrac \pi 2$.
Proof
From Power Series Expansion for Tangent Function:
\(\text {(1)}: \quad\) | \(\ds \tan x\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds x + \frac {x^3} 3 + \frac {2 x^5} {15} + \frac {17 x^7} {315} + \cdots\) |
for $\size x < \dfrac \pi 2$.
From Power Series is Termwise Integrable within Radius of Convergence, $(1)$ can be integrated term by term:
\(\ds \int_0^x \tan x \rd x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \int_0^x \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!} \rd x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\ln \size {\cos x}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {\paren {2 n} \paren {2 n}!}\) | Primitive of $\tan x$: Cosine Form, Integral of Power | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln \size {\cos x}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n 2^{2 n - 1} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\) | simplification |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Miscellaneous Series: $20.49$