Power Series Expansion for Logarithm of Cosine of x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \ln \size {\cos x}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n 2^{2 n - 1} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\)
\(\ds \) \(=\) \(\ds -\frac {x^2} 2 - \frac {x^4} {12} - \frac {x^6} {45} - \frac {17 x^8} {2520} - \cdots\)


for all $x \in \R$ such that $\size x < \dfrac \pi 2$.


Proof

From Power Series Expansion for Tangent Function:

\(\text {(1)}: \quad\) \(\ds \tan x\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds x + \frac {x^3} 3 + \frac {2 x^5} {15} + \frac {17 x^7} {315} + \cdots\)

for $\size x < \dfrac \pi 2$.


From Power Series is Termwise Integrable within Radius of Convergence, $(1)$ can be integrated term by term:

\(\ds \int_0^x \tan x \rd x\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \int_0^x \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!} \rd x\)
\(\ds \leadsto \ \ \) \(\ds -\ln \size {\cos x}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {\paren {2 n} \paren {2 n}!}\) Primitive of $\tan x$: Cosine Form, Integral of Power
\(\ds \leadsto \ \ \) \(\ds \ln \size {\cos x}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n 2^{2 n - 1} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\) simplification

$\blacksquare$


Sources