Primitive of Tangent Function/Cosine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \tan x \rd x = -\ln \size {\cos x} + C$

where $\cos x \ne 0$.


Proof

\(\ds \int \tan x \rd x\) \(=\) \(\ds \int \frac {\sin x} {\cos x} \rd x\) Definition of Real Tangent Function
\(\ds \) \(=\) \(\ds -\int \frac {-\sin x} {\cos x} \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds -\int \frac {\paren {\cos x}'} {\cos x} \rd x\) Derivative of Cosine Function
\(\ds \) \(=\) \(\ds -\ln \size {\cos x} + C\) Primitive of Function under its Derivative

$\blacksquare$


Also see


Sources