Power Series Expansion for Logarithm of Tangent of x
Jump to navigation
Jump to search
Theorem
\(\ds \ln \size {\tan x}\) | \(=\) | \(\ds \ln \size x + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x + \frac {x^2} 3 + \frac {7 x^4} {90} + \frac {62 x^6} {2835} + \cdots\) |
for all $x \in \R$ such that $0 < \size x < \dfrac \pi 2$.
Proof
From Power Series Expansion for Cosecant Function:
\(\ds 2 \csc 2 x\) | \(=\) | \(\ds 2 \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^{n - 1} 2 \paren {2^{2 n - 1} - 1} B_{2 n} \paren {2 x}^{2 n - 1} } {\paren {2 n}!}\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds 2 \csc 2 x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^{n - 1} 2^{2 n + 1} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) |
for $0 < \size {2 x} < \pi$.
From Power Series is Termwise Integrable within Radius of Convergence, $(1)$ can be integrated term by term:
\(\ds \int 2 \csc 2 x \rd x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \int \dfrac {\paren {-1}^{n - 1} 2^{2 n + 1} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!} \rd x\) | ||||||||||||
\(\ds \int 2 \csc 2 x \rd x\) | \(=\) | \(\ds \int \frac 1 x \rd x + \sum_{n \mathop = 1}^\infty \int \dfrac {\paren {-1}^{n - 1} 2^{2 n + 1} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!} \rd x\) | extracting the zeroth term | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln \size {\tan x}\) | \(=\) | \(\ds \ln \size x + \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n - 1} 2^{2 n + 1} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n} } {\paren {2 n} \paren {2 n}!}\) | Primitive of $\csc a x$, Integral of Power, Primitive of Reciprocal | ||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size x + \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n - 1} - 1} B_{2 n} \, x^{2 n} } {n \paren {2 n}!}\) | simplification |
for $0 < \size x < \dfrac \pi 2$.
$\blacksquare$
Also presented as
The Power Series Expansion for Logarithm of Tangent of x can also be presented in the form:
\(\ds \ln \size {\tan x}\) | \(=\) | \(\ds \ln \size x + \sum_{n \mathop = 1}^\infty \frac {2^{2 n} \paren {2^{2 n - 1} - 1} {B_n}^* x^{2 n} } {n \paren {2 n}!}\) |
where ${B_n}^*$ denotes the archaic form of the Bernoulli numbers.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Miscellaneous Series: $20.50$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Miscellaneous Series: $22.50.$