Power Series Expansion for Real Arcsine Function
Jump to navigation
Jump to search
Theorem
The (real) arcsine function has a Taylor series expansion:
\(\ds \arcsin x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} \frac {x^{2 n + 1} } {2 n + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x + \frac {x^3} {2 \times 3} + \frac {\paren {1 \times 3} x^5} {2 \times 4 \times 5} + \frac {\paren {1 \times 3 \times 5} x^7} {2 \times 4 \times 6 \times 7} + \cdots\) |
which converges for $-1 \le x \le 1$.
Proof
From the General Binomial Theorem:
\(\ds \paren {1 - x^2}^{-1/2}\) | \(=\) | \(\ds 1 + \frac 1 2 x^2 + \frac {1 \times 3} {2 \times 4} x^4 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6} x^6 + \cdots\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} x^{2 n}\) |
for $-1 < x < 1$.
From Power Series is Termwise Integrable within Radius of Convergence, $(1)$ can be integrated term by term:
\(\ds \int_0^x \frac 1 {\sqrt{1 - t^2} } \rd t\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \int_0^x \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} t^{2 n} \rd t\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \arcsin x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} \frac {x^{2 n + 1} } {2 n + 1}\) | Derivative of Arcsine Function |
We will now prove that the series converges for $-1 \le x \le 1$.
\(\ds \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} \frac {x^{2 n + 1} } {2 n + 1}\) | \(\sim\) | \(\ds \frac {\paren {2 n}^{2 n} e^{-2 n} \sqrt {4 \pi n} } {2^{2 n} n^{2 n} e^{-2 n} 2 \pi n} \frac {x^{2 n + 1} } {2 n + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\sqrt {\pi n} } \frac {x^{2 n + 1} } {2 n + 1}\) |
Then:
\(\ds \size {\frac 1 {\sqrt {\pi n} } \frac {x^{2 n + 1} } {2 n + 1} }\) | \(<\) | \(\ds \size {\frac {x^{2 n + 1} } {n^{3/2} } }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \frac 1 {n^{3/2} }\) |
Hence by Convergence of P-Series:
- $\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^{3/2} }$
is convergent.
So by the Comparison Test, the Taylor series is convergent for $-1 \le x \le 1$.
$\blacksquare$
Also see
- Power Series Expansion for Real Arccosine Function
- Power Series Expansion for Real Arctangent Function
- Power Series Expansion for Real Arccotangent Function
- Power Series Expansion for Real Arcsecant Function
- Power Series Expansion for Real Arccosecant Function
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Series for Trigonometric Functions: $20.27$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $8$. Taylor Series and Power Series: Appendix: Table $8.2$: Power Series of Important Functions
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): inverse sine series
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Series for Trigonometric Functions: $22.27.$