Power Series Expansion for Reciprocal of Square of 1 - z/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \dfrac 1 {\paren {1 - z}^2}\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {n + 1} z^n\)
\(\ds \) \(=\) \(\ds 1 + 2 z + 3 z^2 + 4 z^3 + \cdots\)


Proof

\(\ds \dfrac 1 {\paren {1 - z}^2}\) \(=\) \(\ds \paren {\dfrac 1 {1 - z} }^2\)
\(\ds \) \(=\) \(\ds \paren {\sum_{n \mathop = 0}^\infty z^n}^2\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {\sum_{k \mathop = 0}^n 1 \times 1} z^n\) Product of Absolutely Convergent Series
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {n + 1} z^n\)

$\blacksquare$


Sources