Prime Sum of Squares of 3 Prime Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$, $b$ and $c$ be prime numbers with the property that:

$a^2 + b^2 + c^2 = p$

where $p$ is a prime number.

Then either $1$ or $2$ of $a$, $b$ and $c$ is equal to $3$.


Proof

First we note that sets of $3$ prime numbers with this property are plentiful.

For example, these are all such sets for $a, b, c < 20$:

\(\ds 2^2 + 2^2 + 3^2\) \(=\) \(\ds 17\)
\(\ds 3^2 + 3^2 + 5^2\) \(=\) \(\ds 43\)
\(\ds 3^2 + 3^2 + 7^2\) \(=\) \(\ds 67\)
\(\ds 3^2 + 3^2 + 11^2\) \(=\) \(\ds 139\)
\(\ds 3^2 + 3^2 + 17^2\) \(=\) \(\ds 307\)
\(\ds 3^2 + 3^2 + 19^2\) \(=\) \(\ds 379\)
\(\ds 3^2 + 5^2 + 5^2\) \(=\) \(\ds 59\)
\(\ds 3^2 + 5^2 + 7^2\) \(=\) \(\ds 93\)
\(\ds 3^2 + 7^2 + 7^2\) \(=\) \(\ds 107\)
\(\ds 3^2 + 7^2 + 11^2\) \(=\) \(\ds 179\)
\(\ds 3^2 + 7^2 + 13^2\) \(=\) \(\ds 227\)
\(\ds 3^2 + 7^2 + 17^2\) \(=\) \(\ds 347\)
\(\ds 3^2 + 7^2 + 19^2\) \(=\) \(\ds 419\)
\(\ds 3^2 + 11^2 + 11^2\) \(=\) \(\ds 251\)
\(\ds 3^2 + 11^2 + 17^2\) \(=\) \(\ds 467\)
\(\ds 3^2 + 11^2 + 19^2\) \(=\) \(\ds 491\)
\(\ds 3^2 + 13^2 + 13^2\) \(=\) \(\ds 347\)
\(\ds 3^2 + 13^2 + 17^2\) \(=\) \(\ds 467\)
\(\ds 3^2 + 17^2 + 17^2\) \(=\) \(\ds 587\)
\(\ds 3^2 + 17^2 + 19^2\) \(=\) \(\ds 659\)

And indeed, the number of instances of $3$ in all the above is either $1$ or $2$.


First we note that if $a = b = c = 3$ then $a^2 + b^2 + c^2 = 27$ which is not prime.

It remains to demonstrate that if none of $a$, $b$ and $c$ are equal to $3$, then $a^2 + b^2 + c^2$ is not prime.


Let $q$ be a prime number such that $q \ne 3$.

Then by definition of prime number:

$3 \nmid q$

where $\nmid$ denotes non-divisibility.

Then from Square Modulo 3:

$q^2 \pmod 3 = 1$


Suppose none of $a$, $b$ and $c$ is equal to $3$.

Then:

\(\ds a^2\) \(\equiv\) \(\ds 1\) \(\ds \pmod 3\)
\(\ds b^2\) \(\equiv\) \(\ds 1\) \(\ds \pmod 3\)
\(\ds c^2\) \(\equiv\) \(\ds 1\) \(\ds \pmod 3\)
\(\ds \leadsto \ \ \) \(\ds a^2 + b^2 + c^2\) \(\equiv\) \(\ds 1 + 1 + 1\) \(\ds \pmod 3\) Modulo Addition is Well-Defined
\(\ds \leadsto \ \ \) \(\ds a^2 + b^2 + c^2\) \(\equiv\) \(\ds 0\) \(\ds \pmod 3\) Definition of Congruence Modulo Integer
\(\ds \leadsto \ \ \) \(\ds a^2 + b^2 + c^2\) \(\equiv\) \(\ds 0\) \(\ds \pmod 3\) Definition of Congruence Modulo Integer

That is:

$3 \divides a^2 + b^2 + c^2$

where $\divides$ denotes divisibility.

Hence if none of $a$, $b$ and $c$ is equal to $3$, $a^2 + b^2 + c^2$ is not prime number.

The result follows.

$\blacksquare$