Primitive of Arctangent Function
Jump to navigation
Jump to search
Theorem
- $\ds \int \arctan x \rd x = x \arctan x - \frac {\map \ln {x^2 + 1} } 2 + C$
Corollary
- $\ds \int \arctan \frac x a \rd x = x \arctan \frac x a - \frac a 2 \map \ln {x^2 + a^2} + C$
Proof 1
Let:
\(\ds u\) | \(=\) | \(\ds \arctan x\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \tan u\) | \(=\) | \(\ds x\) | Definition of Real Arctangent | |||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \sec u\) | \(=\) | \(\ds \sqrt {1 + x^2}\) | Difference of Squares of Secant and Tangent |
Then:
\(\ds \int \arctan x \rd x\) | \(=\) | \(\ds \int u \sec^2 u \rd u\) | Primitive of Function of Arctangent | |||||||||||
\(\ds \) | \(=\) | \(\ds u \tan u + \ln \size {\cos u} + C\) | Primitive of $x \sec^2 a x$ with $a = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds u \tan u - \ln \size {\sec u} + C\) | Logarithm of Reciprocal and Secant is Reciprocal of Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds u x - \ln \size {\sec u} + C\) | Substitution for $\tan u$ from $\paren 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds u x - \ln \size {\sqrt {1 + x^2} } + C\) | Substitution for $\sec u$ from $\paren 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \ln \size {\sqrt {1 + x^2} } + C\) | Substitution for $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \frac {\ln \size {x^2 + 1} } 2 + C\) | Logarithm of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \frac {\map \ln {x^2 + 1} } 2 + C\) | $x^2 + 1$ always positive |
$\blacksquare$
Proof 2
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arctan x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 {x^2 + 1}\) | Derivative of $\arctan x$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds x\) | Primitive of Constant |
Then:
\(\ds \int \arctan x \rd x\) | \(=\) | \(\ds x \arctan x - \int x \paren {\frac 1 {x^2 + 1} } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \int \frac {x \rd x} {x^2 + 1} + C\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \paren {\frac 1 2 \ln \paren {x^2 + 1} } + C\) | Primitive of $\dfrac x {x^2 + a^2}$, setting $a := 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arctan x - \frac {\ln \paren {x^2 + 1} } 2 + C\) | simplifying |
$\blacksquare$
Also presented as
This result can also be presented as:
- $\ds \int \arctan x \rd x = x \arctan x - \ln \sqrt {x^2 + 1} + C$
Also see
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): arc-tangent
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals